[~.:]Pybricks

Pybricks Modules and Examples
Version 2.0.0.post1

Jul 28, 2021



Table of Contents

1 EV3 Quick Start 2
2 hubs - Programmable Hubs 18
3 ev3devices - EV3 Devices 28
4 nxtdevices — NXT Devices 35
5 iodevices - Generic I/O Devices 41
6 parameters — Parameters and Constants 50
7 tools - Timing and Data logging 54
8 robotics - Robotics 58
9 media - Sounds and Images 61
10 messaging - Messaging 83
11 Signals and Units 89
12 More about Motors 93
Python Module Index 96
Index 97

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

This documentation has everything you need to install Pybricks and run your first scripts.
Step 1: Install Pybricks

To get started, go to the EV3 Quick Start.

Step 2: Start coding!

After you’ve followed the installation steps for your hub, check out the Pybricks modules in the left hand menu to see
what you can do.

Step 3: Share what you made (or ask for help!)

Got questions or issues? Please share your findings on our support page so we can make Pybricks even better. Thank
you!

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors


https://github.com/pybricks/support/issues/

CHAPTER 1

EV3 Quick Start

1.1 Installation

This page guides you through the steps to collect and install everything you need to start programming.

1.1.1 What do you need?

To get started, you’ll need:
* A Windows 10 or Mac OS computer
¢ Internet access and administrator access

This is required during the installation only. You will not need special access to write and run pro-
grams later on.

¢ A microSD card

You’ll need a card with a minimum capacity of 4GB and a maximum capacity of 32GB. This type
of microSD card is also known as microSDHC. We recommend cards with Application Performance
Class Al.

* A microSD card slot or card reader in your computer

If your computer does not have a (micro)SD card slot, you can use an external USB (micro)SD card
reader.

* A mini-USB cable, like the one included with your EV3 set

The typical configuration of this equipment is summarized in Figure 1.1.

1.1.2 Preparing your computer

You’ll write your MicroPython programs using Visual Studio Code. Follow the steps below to download, install, and
configure this application:

2

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

\ Mini-USB cable

EV3 Brick
MicroSD card with i
EV3 MicroPython image Computer with

Visual Studio Code ™

Figure 1.1: Setup overview

1. Download Visual Studio Code.
Follow the on-screen instructions to install the application.
Launch Visual Studio Code.

Open the extensions tab.

A

Install the EV3 MicroPython extension as shown in Figure 1.2.

1.1.3 Preparing the microSD card
To make it possible to run MicroPython programs on your EV3 Brick, you’ll now learn how to install the required
tools on your microSD card.

If the microSD card contains files you want to keep, make sure to create a backup of its contents first. See managing
files on the EV3 to learn how to backup your previous MicroPython programs if necessary.

This process erases everything on your microSD card, including any previous MicroPython programs on it.
To install the MicroPython tools on your microSD card:

1. Download the EV3 MicroPython microSD card image and save it in a convenient location. This file is approximately
360 MB. You do net need to unzip the file.

2. Download and install a microSD card flashing tool such as Etcher.
3. Insert the microSD card into your computer or card reader.

4. Launch the flashing tool and follow the steps on your screen to install the file you have just downloaded. If you
use Etcher, you can follow the instructions below, as shown in Figure 1.3.

3

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors


https://code.visualstudio.com/Download
https://pybricks.com/downloads
https://www.balena.io/etcher/

Pybricks Modules and Examples Version 2.0.0.post1

File Edit Selection View Go Run Terminal Help

Search for EV3 MicroPython

LEGO® MINDSTORMS® EV3 MicroPython
Proj templates and documentation For use with LEGC AINDSTORMS® EV3 MicroPython
LEGO® Education Inskall

Open extensions tab

Figure 1.2: Installing the extension from the Visual Studio Code marketplace

(a) Select the EV3 MicroPython microSD card image file you have just downloaded.
(b) Select your microSD card. Make sure that the device and size correspond to your microSD card.

(c) Start the flashing process. This may take several minutes. Do not remove the card until the flashing process
is complete.

Select image Select drive Flash!

Figure 1.3: Using Etcher to flash the EV3 MicroPython microSD card image

1.1.4 Updating the microSD card
To update the microSD card, download a new image file using the link above and flash it to the microSD card as
described above. Be sure to back up any MicroPython programs you want to save.

You do not need to erase the contents of the microSD card first. This is done automatically when you flash the new
image file.

4

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

1.2 Using the EV3 Brick

Make sure the EV3 Brick is turned off. Insert the microSD card you prepared into the microSD card slot on the EV3
Brick, as shown in Figure 1.4.

First, turn off

the EV3 Brick
You can add a A
tape wrapper \
to easily remove Sy

the card later
Place the card

in the SD slot,
text side up

Figure 1.4: Inserting the flashed microSD card into the EV3 Brick

1.2.1 Turning the EV3 Brick on and off

Turn on the EV3 Brick by pressing the dark gray center button.

The boot process may take several minutes. While booting, the EV3 Brick status light turns orange and blinks inter-
mittently, and you’ll see a lot of text on the EV3 screen. The EV3 Brick is ready for use when the status light turns
green.

To turn the EV3 Brick off, open the shutdown menu with the back button, and then select Power Off using the center
button, as shown in Figure 1.5.

1.2.2 Viewing motor and sensor values

When you’re not running a program, you can view motor and sensor values using the device browser, as shown in
Figure 1.6.

1.2.3 Running a program without a computer

You can run previously downloaded programs directly from the EV3 Brick.

To do so, find the program using the file browser on the EV3 screen and press the center button key to start the program
as shown in Figure 1.7.

5

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

@ ©.

Main menu Power Off

Device Browser >
Wireless and Nebworks =
Eattery =
Open Roberta Lab >

2 :
L Press back button

Figure 1.5: Turning the EV3 Brick off

@ @ ©.

Open devices Choose device type Watch values

Figure 1.6: Viewing motor and sensor values

@ @ @

Open file browser Open project folder Run your program

File Browser

Go to previous folder

Figure 1.7: Starting a program using the buttons on the EV3 Brick

6

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

1.2.4 Going back to the original firmware

You can go back to the LEGO® firmware and your LEGO programs at any time. To do so:
1. Turn the EV3 Brick off as shown above.
2. Wait for the screen and brick status light to turn off.
3. Remove the microSD card.

4. Turn the EV3 on.

1.3 Creating and running programs

Now that you’ve set up your computer and EV3 Brick, you’re ready to start writing programs.

To make it easier to create and manage your programs, let’s first have a quick look at how MicroPython projects and
programs for your EV3 robots are organized.

Programs are organized into project folders, as shown in Figure 1.8. A project folder is a directory on your computer
that contains the main program (main.py) and other optional scripts or files. This project folder and all of its contents
will be copied to the EV3 Brick, where the main program will be run.

This page shows you how to create such a project and how to transfer it to the EV3 Brick.

getting_started <—— Project folder

main.py <«—— This main program runs when you press start (or F5)

—— my_module.py

—— picture.png Any other files can be used by main.py

L— sound.wav

Figure 1.8: A project contains a program called main.py and optional resources like sounds or MicroPython modules.

1.3.1 Creating a new project

To create a new project, open the EV3 MicroPython tab and click create a new project, as shown in Figure 1.9. Enter
a project name in the text field that appears and press Enter. When prompted, choose a location for this program and
confirm by clicking choose folder.

When you create a new project, it already includes a file called main.py. To see its contents and to modify it, open it
from the file browser as shown in Figure 1.10. This is where you’ll write your programs.

If you are new to MicroPython programming, we recommend that you keep the existing code in place and add your
code to it.

1.3.2 Opening an existing project

To open a project you created previously, click File and click Open Folder, as shown in Figure 1.11. Next, navigate
to your previously created project folder and click OK. You can also open your recently used projects using the Open
Recent menu option.

7

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

File Edit Selection View Go Run Terminal Help

gekting_:

Choose a project name and press enter

Choose a location for your
project in the pop-up window

Open EV3 MicroPython tab

Figure 1.9: Creating a new project. This example is called getting_started, but you can choose any name.

File Edit Selection View Go Run Terminal Help

d; ER main.py

main.py

or, Gyrc
, Color

= EV3Brick()

ev3.speaker.beep() Write your program

Figure 1.10: Opening the default main.py program.

8

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

File

@ s | Go Run Terminal Help
New File Ctrl+N
New window ctrl+Shift+N

Open File... ctri+o Open a previously

Open Folder... [CErl+K Ctrl+0] created pIOjECt
Open Workspace...

Open Recent
Open a recently

Add Folder to Workspace... used project
Save Workspace As...

Save cerl+s

Auto Save

Preferences
Revert File
Close Editor cerlsw

Close Folder [Ctrl+K F]
Close Window Ctrisw

Exit cri+Q

Figure 1.11: Opening a previously created project.

1.3.3 Connecting to the EV3 Brick with Visual Studio Code
To be able to transfer your code to the EV3 Brick, you’ll first need to connect the EV3 Brick to your computer with
the mini-USB cable and configure the connection with Visual Studio Code. To do so:

* Turn the EV3 Brick on

* Connect the EV3 Brick to your computer with the mini-USB cable

* Configure the USB connection as shown in Figure 1.12.

1.3.4 Downloading and running a program
You can press the F5 key to run the program. Alternatively, you can start it manually by going to the debug tab and
clicking the green start arrow, as shown in Figure 1.13.

When the program starts, a pop-up toolbar allows you to stop the program if necessary. You can also stop the program
at any time using the back button on the EV3 Brick.

If your program produces any output with the print command, this is shown in the output window.

1.3.5 Expanding the example program

Now that you’ve run the basic code template, you can expand the program to make a motor move. First, attach a Large
Motor to Port B on the EV3 Brick, as shown in Figure 1.14.

Next, edit main.py to make it look like this:

9

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

5
Select your EV3 Brick

2
Connect your EV3 with the USB cable

~ EV3DEV DEVICE BROWSER _

Clicl e nn

Open device browser

Search for your EV3 Brick
4

Figure 1.12: Configuring the USB connection between the computer and the EV3 Brick

File Edit Selection View Go Run Terminal Help
UN ° Download and Run main.py

“ VARIABLES main.py

Download and run

.roboti
edia.

' WATCH

~ CALL STACK

ev3dev

directory="/home/robot/getting started" "/home/
tting started/main.py"

Completed s sfully.

" BREAKPOINTS

Figure 1.13: Running a program

10

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Large Motor

Figure 1.14: The EV3 Brick with a Large Motor attached to port B.

11

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.ev3devices import Motor
from pybricks.parameters import Port

# Create your objects here

# Initialize the EV3 Brick.
ev3 = EV3Brick()

# Initialize a motor at port B.
test_motor = Motor (Port.B)

# Write your program here

# Play a sound.
ev3.speaker.beep ()

# Run the motor up to 500 degrees per second. To a target angle of 90 degrees.
test_motor.run_target (500, 90)

# Play another beep sound.
ev3.speaker.beep (frequency=1000, duration=500)

This program makes your robot beep, rotate the motor, and beep again with a higher pitched tone. Run the program to
make sure that it works as expected.

1.3.6 Managing files on the EV3 Brick

After you’ve downloaded a project to the EV3 Brick, you can run, delete, or back up programs stored on it using the
device browser as shown in Figure 1.15.

1.4 Accessing advanced EV3 features

MicroPython runs on top of ev3dev, which is a specific version of Linux. Linux is an operating system. (Other
popular operating systems are Microsoft Windows and Apple macOS.) This means that your EV3 is almost like a real
computer, just much smaller.

Note: [If you just want to write MicroPython programs, you can skip the remaining sections.

The remaining sections are aimed at curious users who want go beyond MicroPython and access some of the other
built-in features of Linux and ev3dev.

1.4.1 The Linux command line
Although your EV3 Brick is quite like a real computer, you do not interact with it using a big screen and a mouse.
Instead, you can access files and programs on it using the command line. 1t is also called the terminal.

Follow the steps in Figure 1.16 to access the command line. Now you can enter commands by typing them in and
pressing enter.

Running basic commands

12

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors


https://www.ev3dev.org/

Pybricks Modules and Examples Version 2.0.0.post1

File Edit Selection View Go Run Terminal Help

R main.py
ETTING_STARTED
3Brick

Motor
t Port

ev3 = EV3Brick()

Project on your computer

test motor = Motor(Port.B)

V3DEV DEVICE BROWSER

main.py
Run

Run in interactive terminal
Delete

Upload

Show Info

Delete file from the EV3 Brick

Upload file back to your computer

Figure 1.15: Using the EV3 device browser to manage files on your EV3 Brick

~ EV3DEV DEVICE BROWSER

> @ evidev 3 .
S E— Open the Linux command line

Take Screenshot

Get system inf ion 1 1
et system info Get version information

Disconnect

TERMINAL  --- 1: SSH: ev3dev M

Figure 1.16: Opening the Linux command line and running the 1s command.

13

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

For example, if you type the following command and press enter:

1s

then you will see the contents of the current folder. Figure 1.16 shows the result: it listed the project folder of the
getting_started project that we just ran.

If you type the following command and press enter:

exit

then the command line will be closed. Alternatively, click the garbage icon shown in Figure 1.16.

You can copy text from the command line by selecting it and then pressing ctrl shift c. You can paste text into
the command line using ctrl shift v.

Running commands as an administrator

Some commands require a password to run. This is similar to administrative tasks on your computer or tablet, such as
installing a new app. These commands work like any other command, but you add sudo in front of them.

As an exercise, you can run the following command to turn the EV3 Brick off:

sudo poweroff

You will be prompted for a password. Type maker and then press Enter.

Warning: Only run commands with sudo if you know what you are doing.

Learning more about the command line

To learn more about the command line and many of the available commands, we recommend reading the beginner-
friendly free ebook called The Linux Command Line.

To learn more about ev3dev-specific tips and tricks, visit the ev3dev website.

1.4.2 Changing the EV3 Brick name
When you search for your EV3 using Visual Studio Code, you see all EV3 Bricks listed by their name. By default, all
EV3 Bricks are named ev3dev. Follow these steps to change that name:

1. Open Visual Studio Code and connect to your EV3 as usual.

2. Read the steps above about running commands as an administrator.

3. Think of a good name. In this example, we’ll call it aut onomous-vehicle2

4. Enter the following command and press enter:

sudo hostnamectl set-hostname autonomous-vehicle2

5. Reboot the EV3 Brick for the change to take effect.
6. You may need to reboot your computer as well.

EV3 Brick names should only contain lowercase letters a through z, the digits 0 through 9, and the hyphen —. It must
start with a letter or digit. It cannot include spaces or other symbols.

14

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors


http://linuxcommand.org/tlcl.php
https://www.ev3dev.org/

Pybricks Modules and Examples Version 2.0.0.post1

1.5 Upgrading from v1.0 to v2.0

EV3 MicroPython version 2.0 was released on May 18, 2020.

This section is for users who have previously used LEGO MINDSTORMS EV3 MicroPython v1.0. We’ll explain
what’s changed and how you can upgrade to benefit from the latest improvements.

If you are a new user and you just got started using version 2.0, you may skip this section.

1.5.1 Upgrading the microSD Card

To upgrade, download the latest microSD card file and install it using the standard instructions.

Note that this will erase all your existing files on the SD Card. Before you upgrade, make sure that you still have all
your projects on your computer. If not, you can upload files back to your computer using these instructions.

As with any software update, be careful about when you update. For example, if you developed your code using
version v1.0 and you are halfway into your robotics competition season, you may want to stick with v1.0 for now.

1.5.2 Upgrading your existing programs
Most changes in v2.0 are new features, like support for additional sensors. Naturally, this will not affect your existing
code. However, some changes were made to existing features to improve performance.

All originally documented features in v1.0 will still work after you upgrade. This means that most programs originally
made for v1.0 will work with the v2.0 microSD card image without any changes.

To try this, simply download and run your original code as you did before.

However, it is recommended that you upgrade both the microSD card and your programs at the same time to ensure
everything works as expected.

The new EV3Brick() class replaces the ev3brick module

Version 2.0 introduces the EV3Brick () class. You can use it instead of the old ev3brick module. The old
ev3brick module can still be used, but it is no longer recommended or documented.

The EV3Brick () class improves the speed and reliability of the EV3 screen and the EV3 speaker. It also adds
functionality like speech and drawing shapes. The default font size is also bigger to make it easier to read text on the
screen.

You can use the following table as a starting point to upgrade your scripts. See the EV3Brick () class documentation
for complete details of all methods and arguments.

15

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples

Version 2.0.0.post1

Action v1.0 v2.0
Initialize from py?rlcks 1m?ort_ from py?rlcks.hubs import |
—ev3brick as brick —EV3Brick
your EV3
ev3 = EV3Brick()
Ijghton brick.light (Color.RED) ev3.light.on(Color.RED)
Iightoﬂ? brick.light (None) ev3.light.off ()
Read if Button.LEFT in brick. if Button.LEFT in ev3.
—buttons () : —buttons.pressed() :
Buttons print ("Left is_, print ("Left is_,
—pressed.") —pressed.")
Phya brick.sound.beep () ev3.speaker.beep ()
beep
Play a brick.sound. ev3.speaker.play_
—~file(SoundFile.HELLO) —file(SoundFile.HELLO)
sound file
Text to ev3.speakerjsay( I can,,
—say anything!")
speech
Play ev3.speaker.play_notes ([
—'C4/4', 'G4/4'1)
notes
. 3 > " ]
Write text brick.display.text ("Hello! ev3.screen.draw_text (50,
. =", (50, 60)) —60, "Hello!™)
at a given
position
Write text brick.display.text ("Hello ev3.screen.pr}nt( Hello™)
—") ev3.screen.print ("world!"™)
and scroll brick.display.text ("world!
automatically ™M)
Change font from pybr?cks.medla.
] —ev3dev import Font
S1ze

big_font = Font (size=24)

4 sohts-of the LEGO-G ‘ i hieh-d

ev3.screen.set_font (big_ 16
—font)

hor 4 his-site—0-20+8-2020-Fhe-Pyvbrieks—Atth

EGO—the LEGOH MENDSTORMS-ane-the MINDSTORMS-EV34
g 20r S S S S 3

8

T™°* - 1 ...

P i

from pybricks.parameters

S

from pvbricks.media.



Pybricks Modules and Examples Version 2.0.0.post1

Other internal changes to existing features

* Most methods of the Motor () class now have Stop.HOLD as the default instead of Stop.COAST. This
improves accuracy in most applications. You can still select St op . COAST if you like.

The internal PID controllers for the motors are more accurate than before. If you give a motor command when
it is already running, it smoothly adjusts the speed to the newly given command. This works even if you keep
adjusting the speed in a fast loop.

Methods to configure motor settings have changed. You can change settings using the control attribute now. The
old settings setters continue to exist in the implementation, but they are no longer documented.

So-called Python keyword arguments are now supported. Previously, you could only enter the argument values.
For example:

’my_motor.run_angle(500, 90, Stop.HOLD, False) ‘

This is still possible. But you can now choose to omit optional arguments and specify others with keywords.
This can make your code easier to read. For example:

’my_motor.run_angle(BOO, 90, wait=False) ‘

* Itis no longer necessary to import pybricks.tools.print. The print function is now built-in. It works
just like Python or MicroPython.

* Most parameters in the parameters now have a specific type and representation. For example, suppose you
measure a color and print the result. If you do print (Color.RED), you will see the parameter instead of a
technical number.

* Sound and image files have moved to a dedicated media module. Importing them from the old location will
continue to work in this release, to make sure existing scripts will still work.

Installing an older version of the Visual Studio Code extension

The Visual Studio Code extension and this documentation are updated automatically. You can still use your existing
scripts with the updated extension. If you absolutely wish to keep the old version, look for the EV3 extension on the
extension tab, click the gear icon, and click install another version.

17

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER 2

hubs — Programmable Hubs

Select your programmable hub using the buttons below.

EV3 Brick

class EV3Brick
LEGO® MINDSTORMS® EV3 Brick.

Using the buttons

buttons.pressed ()
Checks which buttons are currently pressed.

Returns List of pressed buttons.

Return type Listof Button

18

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Using the brick status light

light.on (color)
Turns on the light at the specified color.

Parameters color (Color) — Color of the light. The light turns off if you choose None or a
color that is not available.

Show/hide example
Example: Turn the light on and change the color.

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait
from pybricks.parameters import Color

# Initialize the EV3
ev3 = EV3Brick ()

# Turn on a red light
ev3.light.on(Color.RED)

# Wait
wait (1000)

# Turn the light off
ev3.light.off ()

light.off ()
Turns off the light.

Using the speaker

speaker .beep (frequency=500, duration=100)
Play a beep/tone.

Parameters

» frequency (frequency: Hz) — Frequency of the beep. Frequencies below 100 are treated
as 100.

* duration (fime: ms) — Duration of the beep. If the duration is less than 0, then the
method returns immediately and the frequency play continues to play indefinitely.

speaker.play_notes (notes, tempo=120)
Plays a sequence of musical notes.

For example, you can play: ['C4/4', 'C4/4', 'G4/4', 'G4/4'].
Parameters
* notes (iter)— A sequence of notes to be played (see format below).
* tempo (int)— Beats per minute where a quarter note is one beat.
Show/hide musical note format

Each note is a string with the following format:

19

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

¢ The first character is the name of the note, A to G or R for a rest.
» Note names can also include an accidental # (sharp) or b (flat). B#/Cb and E#/Fb are not allowed.

* The note name is followed by the octave number 2 to 8. For example C4 is middle C. The octave
changes to the next number at the note C, for example, B3 is the note below middle C (C4).

* The octave is followed by / and a number that indicates the size of the note. For example /4 is a
quarter note, /8 is an eighth note and so on.

* This can optionally followed by a . to make a dotted note. Dotted notes are 1-1/2 times as long as
notes without a dot.

* The note can optionally end with a _ which is a tie or a slur. This causes there to be no pause between
this note and the next note.

speaker.play_file (file_name)
Plays a sound file.

Parameters file_name (str) — Path to the sound file, including the file extension.

speaker.say (fext)
Says a given text string.

You can configure the language and voice of the text using set_speech_options ().
Parameters text (str)— What to say.

speaker.set_speech_options (language=None, voice=None, speed=None, pitch=None)
Configures speech settings used by the say () method.

Any option that is set to None will not be changed. If an option is set to an invalid value say () will use
the default value instead.

Parameters

* language (str)— Language of the text. For example, you can choose 'en' (English)
or 'de' (German). A list of all available languages is given below.

* voice (str) — The voice to use. For example, you can choose 'f1' (female voice
variant 1) or 'm3' (male voice variant 3). A list of all available voices is given below.

* speed (int)— Number of words per minute.

* pitch (int)—Pitch (0 to 99). Higher numbers make the voice higher pitched and lower
numbers make the voice lower pitched.

Show/hide available languages and voices
You can choose the following languages:

e 'af': Afrikaans

* 'an': Aragonese

* 'bg': Bulgarian

* 'bs': Bosnian

* 'ca': Catalan

e 'cs': Czech

e 'cy': Welsh

* 'da': Danish

e 'de': German

20

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

e 'el': Greek

* 'en': English (default)

* 'en-gb': English (United Kingdom)
* 'en-sc': English (Scotland)

* 'en—uk-north': English (United Kingdom, Northern)
* 'en-uk-rp"': English (United Kingdom, Received Pronunciation)
* 'en-uk-wmids"': English (United Kingdom, West Midlands)
* 'en-us': English (United States)

* 'en—wi': English (West Indies)

* 'eo': Esperanto

* 'es': Spanish

* 'es—la': Spanish (Latin America)

* 'et': Estonian

e 'fa': Persian

e '"fa-pin"': Persian

e 'fi': Finnish

e 'fr-be': French (Belgium)

e 'fr—fr': French (France)

e 'ga': Irish

e 'grc': Greek

* 'hi': Hindi

* 'hr': Croatian

* 'hu': Hungarian

* 'hy': Armenian

* 'hy-west': Armenian (Western)

e 'id': Indonesian

e 'is': Icelandic

e 'it': Italian

* 'jbo': Lojban

* 'ka': Georgian

* 'kn': Kannada

e 'ku': Kurdish

e 'la': Latin

e '1fn"': Lingua Franca Nova

e '1t': Lithuanian

e '1v': Latvian

21

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

* 'mk': Macedonian

* 'ml': Malayalam

* 'ms': Malay

* 'ne': Nepali

* 'nl': Dutch

* 'no': Norwegian

* 'pa': Punjabi

e 'pl': Polish

* 'pt—br': Portuguese (Brazil)

* 'pt-pt': Portuguese (Portugal)

* 'ro': Romanian

* 'ru': Russian

* 'sk': Slovak

* 'sqg': Albanian

* 'sr': Serbian

* 'sv': Swedish

* 'sw': Swahili

* 'ta': Tamil

e 'tr': Turkish

* 'vi': Vietnamese

e 'vi-hue': Vietnamese (Hue)

* 'vi-sgn': Vietnamese (Saigon)

* 'zh': Mandarin Chinese

* 'zh-yue': Cantonese Chinese
You can choose the following voices:

e 'f1': female variant 1

e 'f£2': female variant 2

e 'f£3': female variant 3

e 'f4': female variant 4

e 'f£5': female variant 5

e 'ml"': male variant 1

* 'm2': male variant 2

* 'm3': male variant 3

* 'm4': male variant 4

* 'm5': male variant 5

* 'm6"': male variant 6

22

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

* 'm7"': male variant 7

* 'croak': croak

* 'whisper': whisper

* 'whisperf': female whisper

speaker.set_volume (volume, which="_all_’)
Sets the speaker volume.

Parameters
* volume (percentage: %) — Volume of the speaker.

* which (str) — Which volume to set. 'Beep' sets the volume for beep () and
play notes (). 'PCM' sets the volume for play file() and say (). '_all_"
sets both at the same time.

Using the screen

screen.clear ()
Clears the screen. All pixels on the screen will be set to Color. WHITE.

screen.draw_text (x, y, text, text_color=Color.BLACK, background_color=None)
Draws text on the screen.

The most recent font set using set_font () will be used or Font . DEFAULT if no font has been set yet.
Parameters
e x (int)— The x-axis value where the left side of the text will start.
* y (int) — The y-axis value where the top of the text will start.
¢ text (str)- The text to draw.
* text_color (Color) — The color used for drawing the text.

* background_color (Color) — The color used to fill the rectangle behind the text or
None for transparent background.

screen.print (*args, sep="", end="\n’")
Prints a line of text on the screen.

This method works like the builtin print () function, but it writes on the screen instead.

You can set the font using set_ font (). If no font has been set, Font . DEFAULT will be used. The
text is always printed used black text with a white background.

Unlike the builtin print (), the text does not wrap if it is too wide to fit on the screen. It just gets cut
off. But if the text would go off of the bottom of the screen, the entire image is scrolled up and the text is
printed in the new blank area at the bottom of the screen.

Parameters
* x (object) — Zero or more objects to print.
* sep (str)— Separator that will be placed between each object that is printed.
* end (str)— End of line that will be printed after the last object.
Show/hide example

Example: Say hello... in several ways.

23

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples

Version 2.0.0.post1

#!/usr/bin/env pybricks—-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait
from pybricks.media.ev3dev import Font

Font (size=6)
Font (size=24, bold=True)
Font (size=24,

tiny_font =
big_font =
chinese_font =

# Initialize the EV3

ev3 = EV3Brick()

# Say hello
ev3.screen.print ('Hello!")

# Say tiny hello
ev3.screen.set_font (tiny_font)
ev3.screen.print ('hello")

# Say big hello
ev3.screen.set_font (big_font)
ev3.screen.print ("HELLO")

# Say Chinese hello
ev3.screen.set_font (chinese_font)
ev3.screen.print ('{RIf")

# Wait some time to look at the screen
wait (5000)

# It takes some time for fonts to load from file,
# load them once at the beginning of the program like this:

lang="'zh-cn'")

so it 1is best to only

screen.set_font (font)
Sets the font used for writing on the screen.

The font is used for both draw_text () and print ().

Parameters font (Font) — The font to use.
Example: See example in print ().

screen.load_image (source)

Clears this image, then draws the source image centered in the screen.

Parameters source (Image or str)-Thesource Tmage. If the argument is a string, then

the source image is loaded from file.
Show/hide example

Example: Show an image on the screen.

#!/usr/bin/env pybricks—-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait
from pybricks.media.ev3dev import Image,

ImageFile

(continues on next page)

24

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

(continued from previous page)

# It takes some time to load images from the SD card, so it is best to load
# them once at the beginning of a program like this:
ev3_img = Image (ImageFile.EV3_ICON)

# Initialize the EV3
ev3 = EV3Brick ()

# Show an image
ev3.screen.load_image (ev3_img)

# Wait some time to look at the image
wait (5000)

screen.draw_image (x, y, source, transparent=None)
Draws the source image on the screen.

Parameters
* x (int)— The x-axis value where the left side of the image will start.
* y (int) — The y-axis value where the top of the image will start.

* source (Image or str)— The source Tmage. If the argument is a string, then the
source image is loaded from file.

* transparent (Color) — The color of image to treat as transparent or None for no
transparency.

screen.draw_pixel (x,y, color=ColornBLACK)
Draws a single pixel on the screen.

Parameters
e x (int) — The x coordinate of the pixel.
e y (int)— The y coordinate of the pixel.
e color (Color)— The color of the pixel.

screen.draw_line (x/, yl, x2, y2, width=1, color=Color. BLACK)
Draws a line on the screen.

Parameters

e x1 (int) — The x coordinate of the starting point of the line.
e y1 (int)— The y coordinate of the starting point of the line.
* %2 (int) — The x coordinate of the ending point of the line.
* y2 (int) - The y coordinate of the ending point of the line.
* width (int) — The width of the line in pixels.

¢ color (Color)— The color of the line.

Show/hide example

Example: Draw some shapes on the screen.

25

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait

# Initialize the EV3
ev3 = EV3Brick()

# Draw a rectangle
ev3.screen.draw_box (10, 10, 40, 40)

# Draw a solid rectangle
ev3.screen.draw_box (20, 20, 30, 30, fill=True)

# Draw a rectangle with rounded corners
ev3.screen.draw_box (50, 10, 80, 40, 5)

# Draw a circle
ev3.screen.draw_circle (25, 75, 20)

# Draw a triangle using lines

x1l, yl = 65, 55

x2, y2 = 50, 95

x3, y3 = 80, 95
ev3.screen.draw_line(x1l, yl, x2, y2)
ev3.screen.draw_line(x2, y2, x3, y3)
ev3.screen.draw_line(x3, y3, x1, vyl)

# Wait some time to look at the shapes
wait (5000)

screen.draw_box (xl, yl, x2, y2, r=0, fill=False, color=Color.BLACK )
Draws a box on the screen.

Parameters
* x1 (int) - The x coordinate of the left side of the box.
e y1 (int) - The y coordinate of the top of the box.
* %2 (int)— The x coordinate of the right side of the box.
* y2 (int)— The y coordinate of the bottom of the box.
e r (int)— The radius of the corners of the box.

e £il11 (bool)—1If True, the box will be filled with color, otherwise only the outline of
the box will be drawn.

¢ color (Color)— The color of the box.
Example: See example in draw_line ().

screen.draw_circle (x, Yy, 1, fill=False, color=Color.BLACK)
Draws a circle on the screen.

Parameters

¢ x (int) - The x coordinate of the center of the circle.

26

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

* y (int) — The y coordinate of the center of the circle.
e r (int)— The radius of the circle.

e £ill (bool)—If True, the circle will be filled with color, otherwise only the circum-
ference will be drawn.

¢ color (Color) - The color of the circle.
Example: See example in draw_Iline ().

screen.width
Gets the width of the screen in pixels.

screen.height
Gets the height of the screen in pixels.

screen.save (filename)
Saves the screen as a . png file.

Parameters filename (str)— The path to the file to be saved.
Raises
e TypeError — filename is not a string.

e OSError — There was a problem saving the file.

Using the battery

battery.voltage ()
Gets the voltage of the battery.

Returns Battery voltage.
Return type voltage: mV

battery.current ()
Gets the current supplied by the battery.

Returns Battery current.

Return type current: mA

27

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER 3

ev3devices — EV3 Devices

LEGO® MINDSTORMS® EV3 motors and sensors.

3.1 Motors

Figure 3.1: EV3-compatible motors. The arrows indicate the default positive direction.

class Motor (port, positive_direction=Direction. CLOCKWISE, gears=None)
Generic class to control motors with built-in rotation sensors.

Parameters
* port (Port) — Port to which the motor is connected.

e positive_direction (Direction)— Which direction the motor should turn when
you give a positive speed value or angle.

* gears (1ist)— List of gears linked to the motor.

For example: [12, 36] represents a gear train with a 12-tooth and a 36-tooth gear. Use a
list of lists for multiple gear trains, suchas [ [12, 36], [20, 16, 40]].

When you specify a gear train, all motor commands and settings are automatically adjusted
to account for the resulting gear ratio. The motor direction remains unchanged by this.

28

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Measuring

speed ()
Gets the speed of the motor.

Returns Motor speed.
Return type rotational speed: deg/s

angle ()
Gets the rotation angle of the motor.

Returns Motor angle.
Return type angle: deg

reset_angle (angle)
Sets the accumulated rotation angle of the motor to a desired value.

Parameters angle (angle: deg) — Value to which the angle should be reset.

Stopping

stop ()
Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

brake ()
Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

hold ()
Stops the motor and actively holds it at its current angle.

Action

run (speed)
Runs the motor at a constant speed.

The motor accelerates to the given speed and keeps running at this speed until you give a new command.
Parameters speed (rotational speed: deg/s) — Speed of the motor.

run_time (speed, time, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed for a given amount of time.

The motor accelerates to the given speed, keeps running at this speed, and then decelerates. The total
maneuver lasts for exactly the given amount of t ime.

Parameters
» speed (rotational speed: deg/s) — Speed of the motor.
e time (time: ms)— Duration of the maneuver.
* then (Stop) — What to do after coming to a standstill.

* wait (bool)— Wait for the maneuver to complete before continuing with the rest of the
program.

29

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

run_angle (speed, rotation_angle, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed by a given angle.

Parameters
* speed (rotational speed: deg/s) — Speed of the motor.
* rotation_angle (angle: deg) — Angle by which the motor should rotate.
* then (Stop) — What to do after coming to a standstill.

* wait (bool)— Wait for the maneuver to complete before continuing with the rest of the

program.

run_target (speed, target_angle, then=Stop. HOLD, wait=True)
Runs the motor at a constant speed towards a given target angle.

The direction of rotation is automatically selected based on the target angle. It does matter if speed is

positive or negative.
Parameters
* speed (rotational speed: deg/s) — Speed of the motor.
* target_angle (angle: deg) — Angle that the motor should rotate to.
* then (Stop) — What to do after coming to a standstill.

* wait (bool)— Wait for the motor to reach the target before continuing with the rest of
the program.

run_until_stalled (speed, then=Stop. COAST, duty_limit=None)
Runs the motor at a constant speed until it stalls.

Parameters
* speed (rotational speed: deg/s) — Speed of the motor.
* then (Stop)— What to do after coming to a standstill.

e duty_limit (percentage: %) — Torque limit during this command. This is useful to
avoid applying the full motor torque to a geared or lever mechanism.

Returns Angle at which the motor becomes stalled.
Return type angle: deg

dc (duty)
Rotates the motor at a given duty cycle (also known as “power”).

This method lets you use a motor just like a simple DC motor.

Parameters duty (percentage: %) — The duty cycle (-100.0 to 100).

Advanced motion control

track_target (farget_angle)
Tracks a target angle. This is similar to run_target (), but the usual smooth acceleration is skipped: it

will move to the target angle as fast as possible. This method is useful if you want to continuously change
the target angle.
Parameters target_angle (angle: deg) — Target angle that the motor should rotate to.

30

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

control
The motors use PID control to accurately track the speed and angle targets that you specify. You can
change its behavior through the control attribute of the motor. See The Control Class for an overview
of available methods.

3.2 Touch Sensor

class TouchSensor (port)
LEGO® MINDSTORMS® EV3 Touch Sensor.

Parameters port (Port) — Port to which the sensor is connected.

pressed()
Checks if the sensor is pressed.

Returns True if the sensor is pressed, False if it is not pressed.

Return type bool

3.3 Color Sensor

class ColorSensor (port)
LEGO® MINDSTORMS® EV3 Color Sensor.

Parameters port (Port) — Port to which the sensor is connected.

color ()
Measures the color of a surface.

Returns Color.BLACK, Color.BLUE, Color.GREEN, Color.YELLOW, Color.RED,
Color.WHITE, Color.BROWN or None.

Return type Color, or None if no color is detected.

ambient ()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from O (dark) to 100 (bright).

31

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Return type percentage: %

reflection()
Measures the reflection of a surface using a red light.

Returns Reflection, ranging from 0 (no reflection) to 100 (high reflection).
Return type percentage: %

rgb ()
Measures the reflection of a surface using a red, green, and then a blue light.

Returns Tuple of reflections for red, green, and blue light, each ranging from 0.0 (no reflection)
to 100.0 (high reflection).

Return type (percentage: %, percentage: %, percentage: %)

3.4 Infrared Sensor and Beacon

class InfraredSensor (port)
LEGO® MINDSTORMS® EV3 Infrared Sensor and Beacon.

Parameters port (Port) — Port to which the sensor is connected.

distance ()
Measures the relative distance between the sensor and an object using infrared light.

Returns Relative distance ranging from 0 (closest) to 100 (farthest).
Return type relative distance: %

beacon (channel)
Measures the relative distance and angle between the remote and the infrared sensor.

Parameters channel (int)— Channel number of the remote.

Returns Tuple of relative distance (0 to 100) and approximate angle (-75 to 75 degrees) between
remote and infrared sensor.

Return type (relative distance: %, angle: deg) or (None, None) if no remote is detected.

buttons (channel)
Checks which buttons on the infrared remote are pressed.

This method can detect up to two buttons at once. If you press more buttons, you may not get useful data.
Parameters channel (int)— Channel number of the remote.
Returns List of pressed buttons on the remote on selected channel.

Return type List of Button

32

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

keypad ()
Checks which buttons on the infrared remote are pressed.

This method can independently detect all 4 up/down buttons, but it cannot detect the beacon button.
This method only works with the remote in channel 1.
Returns List of pressed buttons on the remote on selected channel.

Return type List of Button

3.5 Ultrasonic Sensor

class UltrasonicSensor (port)
LEGO® MINDSTORMS® EV3 Ultrasonic Sensor.

Parameters port (Port) — Port to which the sensor is connected.

distance (silent=Fualse)
Measures the distance between the sensor and an object using ultrasonic sound waves.

Parameters silent (bool)—Choose True to turn the sensor off after measuring the distance.
This reduces interference with other ultrasonic sensors. If you do this too frequently, the
sensor can freeze. If this happens, unplug it and plug it back in.

Returns Distance.
Return type distance: mm

presence ()
Checks for the presence of other ultrasonic sensors by detecting ultrasonic sounds.

If the other ultrasonic sensor is operating in silent mode, you can only detect the presence of that sensor
while it is taking a measurement.

Returns True if ultrasonic sounds are detected, False if not.

Return type bool

3.6 Gyroscopic Sensor

class GyroSensor (port, positive_direction=Direction. CLOCKWISE)
LEGO® MINDSTORMS® EV3 Gyro Sensor.

Parameters
* port (Port) — Port to which the sensor is connected.

* positive_direction (Direction)— Positive rotation direction when looking at the
red dot on top of the sensor.

33

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

speed ()
Gets the speed (angular velocity) of the sensor.

Returns Sensor angular velocity.
Return type rorational speed: deg/s

angle ()
Gets the accumulated angle of the sensor.

Returns Rotation angle.
Return type angle: deg

If you use the angle () method, you cannot use the speed () method in the same program. Doing so
would reset the sensor angle to zero every time you read the speed.

reset_angle (angle)
Sets the rotation angle of the sensor to a desired value.

Parameters angle (angle: deg) — Value to which the angle should be reset.

34

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER 4

nxtdevices — NXT Devices

Use LEGO® MINDSTORMS® NXT motors and sensors with the EV3 brick.

4.1 NXT Motor

This motor works just like a LEGO MINDSTORMS EV3 Large Motor. You can use it in your programs using the
Motor class.

4.2 NXT Touch Sensor

class TouchSensor (port)
LEGO® MINDSTORMS® NXT Touch Sensor.

Parameters port (Port) — Port to which the sensor is connected.

pressed ()
Checks if the sensor is pressed.

Returns True if the sensor is pressed, False if it is not pressed.

Return type bool

35

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

4.3 NXT Light Sensor

class LightSensor (port)
LEGO® MINDSTORMS® NXT Color Sensor.

Parameters port (Port) — Port to which the sensor is connected.

ambient ()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).
Return type percentage: %

reflection ()
Measures the reflection of a surface using a red light.

Returns Reflection, ranging from 0 (no reflection) to 100 (high reflection).

Return type percentage: %

4.4 NXT Color Sensor

class ColorSensor (port)
LEGO® MINDSTORMS® NXT Color Sensor.

Parameters port (Port) — Port to which the sensor is connected.

color ()
Measures the color of a surface.

Returns Color.BLACK, Color.BLUE, Color.GREEN, Color.YELLOW, Color.RED,
Color.WHITE or None.

Return type Color, or None if no color is detected.

ambient ()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).

36

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Return type percentage: %

reflection()
Measures the reflection of a surface.

Returns Reflection, ranging from 0 (no reflection) to 100 (high reflection).
Return type percentage: %

rgb ()
Measures the reflection of a surface using a red, green, and then a blue light.

Returns Tuple of reflections for red, green, and blue light, each ranging from 0.0 (no reflection)
to 100.0 (high reflection).

Return type (percentage: %, percentage: %, percentage: %)
Built-in light

This sensor has a built-in light. You can make it red, green, blue, or turn it off.

light.on (color)
Turns on the light at the specified color.

Parameters color (Color)— Color of the light. The light turns off if you choose None or a
color that is not available.

light.off ()
Turns off the light.

4.5 NXT Ultrasonic Sensor

class UltrasonicSensor (port)
LEGO® MINDSTORMS® NXT Ultrasonic Sensor.

Parameters port (Port) — Port to which the sensor is connected.

distance ()
Measures the distance between the sensor and an object using ultrasonic sound waves.

Returns Distance.

Return type distance: mm

4.6 NXT Sound Sensor

class SoundSensor (port)
LEGO® MINDSTORMS® NXT Sound Sensor.

37

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Parameters port (Port) — Port to which the sensor is connected.

intensity (audible_only=True)
Measures the ambient sound intensity (loudness).

Parameters audible_only (bool) — Detect only audible sounds. This tries to filter out
frequencies that cannot be heard by the human ear.

Returns Sound intensity.

Return type percentage: %

4.7 NXT Temperature Sensor

class TemperatureSensor (port)
LEGO® MINDSTORMS® NXT Temperature Sensor.

Parameters port (Port) — Port to which the sensor is connected.

temperature ()
Measures the temperature.

Returns Measured temperature.

Return type remperature: °C

4.8 NXT Energy Meter

class EnergyMeter (port)
LEGO® MINDSTORMS® Education NXT Energy Meter.

Parameters port (Port) — Port to which the sensor is connected.

storage ()
Gets the total available energy stored in the battery.

38

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Returns Remaining stored energy.
Return type energy: J

input ()
Measures the electrical signals at the input (bottom) side of the energy meter. It measures the voltage
applied to it and the current passing through it. The product of these two values is power. This power
value is the rate at which the stored energy increases. This power is supplied by an energy source such as
the provided solar panel or an externally driven motor.

Returns Voltage, current, and power measured at the input port.
Return type (voltage: mV, current: mA, power: mW)

output ()
Measures the electrical signals at the output (top) side of the energy meter. It measures the voltage applied
to the external load and the current passing to it. The product of these two values is power. This power
value is the rate at which the stored energy decreases. This power is consumed by the load, such as a light
or a motor.

Returns Voltage, current, and power measured at the output port.

Return type (voltage: mV, current: mA, power: mW)

4.9 Vernier Adapter

class VernierAdapter (port, conversion=None)
LEGO® MINDSTORMS® Education NXT/EV3 Adapter for Vernier Sensors.

Parameters
* port (Port) — Port to which the sensor is connected.

e conversion (callable) — Function of the format conversion (). This function is
used to convert the raw analog voltage to the sensor-specific output value. Each Vernier Sen-
sor has its own conversion function. The example given below demonstrates the conversion
for the Surface Temperature Sensor.

voltage ()
Measures the raw analog sensor voltage.

Returns Analog voltage.
Return type voltage: mV

conversion (voltage)
Converts the raw voltage (mV) to a sensor value.

39

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

If you did not provide a conversion function earlier, no conversion will be applied.
Parameters voltage (voltage: mV) — Analog sensor voltage
Returns Converted sensor value.
Return type float

value ()
Measures the sensor voltage () and then applies your conversion () to give you the sensor value.

Returns Converted sensor value.
Return type float
Show/hide example

Example: Using the Surface Temperature Sensor.

#!/usr/bin/env pybricks-micropython
from pybricks.parameters import Port
from pybricks.nxtdevices import VernierAdapter

from math import log

# Conversion formula for Surface Temperature Sensor
def convert_raw_to_temperature(voltage) :

# Convert the raw voltage to the NIC resistance
# according to the Vernier Adapter EV3 block.
counts = voltage/5000%x4096

ntc = 15000% (counts)/ (4130-counts)

# Handle log(0) safely: make sure that ntc value is positive.
if ntc <= 0:
ntc = 1

# Apply Steinhart-Hart equation as given in the sensor documentation.
KO = 1.02119e-3

Kl = 2.22468e-4

K2 = 1.33342e-7

return 1/ (KO + Klxlog(ntc) + K2xlog(ntc) x*3)

# Initialize the adapter on port 1
thermometer = VernierAdapter (Port.S1l, convert_raw_to_temperature)

# Get the measured value and print it
temp = thermometer.value ()
print (temp)

40

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER B

iodevices — Generic I/O Devices

Generic input/output devices.

Note: This module provides classes to interact with unofficial motors, sensors, and other custom electronics. You
should only connect custom electronics or unofficial devices if you know what you are doing. Proceed with caution.

5.1 LUMP Device

class LUMPDevice (port)
Devices using the LEGO UART Messaging Protocol.

Parameters port (Port) — Port to which the device is connected.

read (mode)
Reads values from a given mode.

Parameters mode (int) — Device mode.

41

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Returns Values read from the sensor.
Return type tuple

write (mode, values)
Writes values to the sensor. Only selected sensors and modes support this.

Parameters
¢ mode (int) — Device mode.
* data (tuple) — Values to be written.

The classes listed below are only available on the EV3.

5.2 Analog Sensor

class AnalogSensor (port)
Generic or custom analog sensor.

Parameters port (Port) — Port to which the sensor is connected.

voltage ()
Measures analog voltage.

Returns Analog voltage.
Return type voltage: mV

resistance ()
Measures resistance.

This value is only meaningful if the analog device is a passive load such as a resistor or thermistor.
Returns Resistance of the analog device.
Return type resistance: <)

active ()
Sets sensor to active mode. This sets pin 5 of the sensor port to high.

This is used in some analog sensors to control a switch. For example, if you use the NXT Light Sensor
as a custom analog sensor, this method will turn the light on. From then on, voltage () returns the raw
reflected light value.

passive ()
Sets sensor to passive mode. This sets pin 5 of the sensor port to low.

This is used in some analog sensors to control a switch. For example, if you use the NXT Light Sensor
as a custom analog sensor, this method will turn the light off. From then on, voltage () returns the raw
ambient light value.

42

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

5.3 12C Device

class I2CDevice (port, address)
Generic or custom I2C device.

Parameters
* port (Port) — Port to which the device is connected.

e address (int)—I2C address of the client device. See I12C Addresses.

read (reg, length=1)
Reads bytes, starting at a given register.

Parameters
* reg (int) — Register at which to begin reading: 0-255 or 0x00-0xFF.
* length (int)— How many bytes to read.

Returns Bytes returned from the device.

Return type bytes

write (reg, data=None)
Writes bytes, starting at a given register.

Parameters
* reg (int) — Register at which to begin writing: 0-255 or 0x00-0xFF.
* data (bytes)— Bytes to be written.
Show/hide example

Example: Read and write to an I12C device.

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick

from pybricks.iodevices import I2CDevice
from pybricks.parameters import Port

# Initialize the EV3
ev3 = EV3Brick()

# Initialize I2C Sensor
device = I2CDevice (Port.S2, 0xD2 >> 1)

# Read one byte from the device.
# For this device, we can read the Who Am I
# register (0x0F) for the expected value: 211.
if 211 not in device.read (0x0F) :
raise OSError ("Device i1s not attached")

(continues on next page)

43

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

(continued from previous page)

HH=

To write data, create a bytes object of one
or more bytes. For example:
# data = bytes((1, 2, 3))

H

# Write one byte (value 0x08) to register 0x22
device.write (0x22, bytes ((0x08,)))

5.3.1 12C Addresses

12C addresses are 7-bit values. However, most vendors who make LEGO compatible sensors provide an 8-bit address
in their documentation. To use those addresses, you must shift them by 1 bit. For example, if the documented address
is 0xD2, you cando address = 0xD2 >> 1.

5.3.2 Advanced I12C Commands

Some rudimentary 12C devices do not require a register argument or even any data. You can achieve this behavior as
shown in the examples below.

Show/hide example

Example: Advanced I12C read and write techniques.

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick

from pybricks.iodevices import I2CDevice
from pybricks.parameters import Port

# Initialize the EV3
ev3 = EV3Brick()

# Initialize I2C Sensor
device = I2CDevice (Port.S2, 0xD2 >> 1)

# Recommended for reading
result, = device.read(reg=0x0F, length=1)

# Read 1 byte from no particular register:
device.read (reg=None, length=1)

# Read 0 bytes from no particular register:
device.read(reg=None, length=0)

# I2C write operations consist of a register byte followed
# by a series of data bytes. Depending on your device, you
# can choose to skip the register or data as follows:

# Recommended for writing:
device.write (reg=0x22, data=b'\x08")

# Write 1 byte to no particular register:
device.write (reg=None, data=b'\x08")

# Write 0 bytes to a particular register:
device.write (reg=0x08, data=None)

(continues on next page)

44

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors




Pybricks Modules and Examples Version 2.0.0.post1

(continued from previous page)

# Write 0 bytes to no particular register:
device.write (reg=None, data=None)

Additional technical resources

The I2CDevice class methods call functions from the Linux SMBus driver. To find out which commands are called
under the hood, check the Pybricks source code. More details about using I2C without MicroPython can be found on
the ev3dev I12C page.

5.4 UART Device

class UARTDevice (port, baudrate, timeout=None)
Generic UART device.

Parameters
* port (Port) — Port to which the device is connected.
* baudrate (int) - Baudrate of the UART device.

* timeout (time: ms) — How long to wait during read () before giving up. If you choose
None, it will wait forever.

read (length=1)
Reads a given number of bytes from the buffer.

Your program will wait until the requested number of bytes are received. If this takes longer than
timeout, the ETIMEDOUT exception is raised.

Parameters length (int)— How many bytes to read.
Returns Bytes returned from the device.
Return type bytes

read_all ()
Reads all bytes from the buffer.

Returns Bytes returned from the device.
Return type bytes

write (data)
Writes bytes.

Parameters data (bytes) — Bytes to be written.

waiting ()
Gets how many bytes are still waiting to be read.

Returns Number of bytes in the buffer.

45

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors


https://github.com/pybricks/pybricks-micropython
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/i2c.html

Pybricks Modules and Examples Version 2.0.0.post1

Return type int

clear ()
Empties the buffer.

Show/hide example
Example: Read and write to a UART device.

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick

from pybricks.iodevices import UARTDevice
from pybricks.parameters import Port

from pybricks.media.ev3dev import SoundFile

# Initialize the EV3
ev3 = EV3Brick ()

# Initialize sensor port 2 as a uart device
ser = UARTDevice (Port.S2, baudrate=115200)

# Write some data
ser.write (b'\r\nHello, world!\zx\n')

# Play a sound while we wait for some data

for i in range (3):
ev3.speaker.play_file(SoundFile.HELLO)
ev3.speaker.play_file (SoundFile.GOOD)
ev3.speaker.play_file (SoundFile.MORNING)
print ("Bytes waiting to be read:", ser.waiting())

# Read all data received while the sound was playing
data = ser.read_all ()
print (data)

5.5 DC Motor

class DCMotor (port, positive_direction=Direction. CLOCKWISE)
Generic class to control simple motors without rotation sensors, such as train motors.

Parameters

e port (Port) — Port to which the motor is connected.

46

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors




Pybricks Modules and Examples Version 2.0.0.post1

* positive_direction (Direction)— Which direction the motor should turn when
you give a positive duty cycle value.

dc (duty)
Rotates the motor at a given duty cycle (also known as “power”).

Parameters duty (percentage: %) — The duty cycle (-100.0 to 100).

stop ()
Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

5.6 Ev3dev sensors

EV3 MicroPython is built on top of ev3dev, which means that a sensor may be supported even if it is not listed in this
documentation. If so, you can use it with the Ev3devSensor class. This is easier and faster than using the custom
device classes given above.

To check whether you can use the Ev3devSensor class:
¢ Plug the sensor into your EV3 Brick.
* Go to the main menu of the EV3 Brick.
* Select Device Browser and then Sensors.
* If your sensor shows up, you can use it.

Now select your sensor from the menu and choose set mode. This shows all available modes for this sensor. You can
use these mode names as the mode setting below.

To learn more about compatible devices and what each mode does, visit the ev3dev sensors page.

class Ev3devSensor (port)
Read values of an ev3dev-compatible sensor.

Parameters port (Port) — Port to which the device is connected.

sensor_index
Index of the ev3dev sysfs lego-sensor class.

port_index
Index of the ev3dev sysfs lego-port class.

read (mode)
Reads values at a given mode.

Parameters mode (str)— Mode name.
Returns Values read from the sensor.

Return type tuple

47

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors


http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/sensors.html
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/sensors.html#the-lego-sensor-subsytem
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/ports.html#the-lego-port-subsystem
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/sensor_data.html

Pybricks Modules and Examples Version 2.0.0.post1

Show/hide example: Reading values with the Ev3devSensor class

Example

In this example we use the LEGO MINDSTORMS EV3 Color Sensor with the raw RGB mode. This gives uncalibrated

red, green, and blue reflection values.

#!/usr/bin/env pybricks-micropython

from pybricks.parameters import Port

from pybricks.tools import wait

from pybricks.iodevices import Ev3devSensor

# Initialize an Ev3devSensor.

# In this example we use the

# LEGO MINDSTORMS EV3 Color Sensor.
sensor = Ev3devSensor (Port.S3)

while True:
# Read the raw RGB values
r, g, b = sensor.read('RGB-RAW")

# Print results
print ('"R: {0\t G: [(1}\t B: {(2}'.format(r, g, b))

# Wait
wait (200)

Show/hide example: Extending the Ev3devSensor class

Example

This example shows how to extend the Ev3devSensor class by accessing additional features found in the Linux

system folder for this device.

#!/usr/bin/env pybricks-micropython
from pybricks.parameters import Port
from pybricks.iodevices import Ev3devSensor

class MySensor (Ev3devSensor) :
"""Example of extending the Ev3devSensor class."""

def _ init__ (self, port):
"""Tnitialize the sensor."""

# Initialize the parent class.
super () .__init__ (port)

# Get the sysfs path.
self.path = "/sys/class/lego-sensor/sensor' + str(self.sensor_index)

def get_modes (self):
"""Get a list of mode strings so we don't have to look them up."""

# The path of the modes file.
modes_path = self.path + '/modes'

# Open the modes file.
with open (modes_path, 'r') as m:

(continues on next page)

48

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

(continued from previous page)

# Read the contents.
contents = m.read()

# Strip the newline symbol, and split at every space symbol.
return contents.strip() .split (' ")

# Initialize the sensor
sensor = MySensor (Port.S3)

# Show where this sensor can be found
print (sensor.path)

# Print the available modes
modes = sensor.get_modes ()
print (modes)

# Read mode 0 of this sensor
val = sensor.read (modes[0])
print (val)

49

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER O

parameters — Parameters and Constants

Constant parameters/arguments for the Pybricks APIL

class Port
Port on the programmable brick or hub.

Motor ports:
A

B

C

D

Sensor ports:
s1

s2

S3

s4

class Direction
Rotational direction for positive speed or angle values.

CLOCKWISE
A positive speed value should make the motor move clockwise.

COUNTERCLOCKWISE
A positive speed value should make the motor move counterclockwise.

positive direction = Positive speed: | Negative speed:
Direction.CLOCKWISE clockwise counterclockwise
Direction.COUNTERCLOCKWISE | counterclockwise | clockwise

In general, clockwise is defined by looking at the motor shaft, just like looking at a clock.

50

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Some motors have two shafts. If in doubt, refer to the following diagrams:
* Clockwise direction for EV3/NXT motors

class Stop
Action after the motor stops: coast, brake, or hold.

COAST
Let the motor move freely.

BRAKE
Passively resist small external forces.

HOLD
Keep controlling the motor to hold it at the commanded angle. This is only available on motors with
encoders.

The following table show how each stop type adds an extra level of resistance to motion. In these examples, m
isa Motor and and d is a DriveBase. The examples also show how running at zero speed compares to these
stop types.

51

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples

Version 2.0.0.post1

Type

Friction

Back
EMF

Speed
kept at 0

Angle kept
at target

Examples

Coast

m.stop ()
m.

run_target (p

90,
Stop.
COAST)

Brake

m.brake ()
m.

run_target (p

90,
Stop.
BRAKE)

m.run (0)
d.drive (0,
0)

Hold

m.hold ()
m.

run_target (p

90,
Stop.HOLD)
d.
straight (0)
d.
straight (10

class Color

Light or surface color.

BLACK
BLUE

GREEN

YELLOW

RED
WHITE

BROWN

52

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

ORANGE
PURPLE

class Button
Buttons on a brick or remote:

LEFT_DOWN
DOWN

RIGHT DOWN
LEFT
CENTER
RIGHT
LEFT_UP

UP

BEACON

RIGHT_ UP

LEFT_UP UP/BEACON | RIGHT_UP
LEFT CENTER RIGHT
LEFT_DOWN | DOWN RIGHT_DOWN

53

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER /

tools — Timing and Data logging

Common tools for timing and data logging.

wait (time)
Pauses the user program for a specified amount of time.

Parameters time (time: ms) — How long to wait.

class StopWatch
A stopwatch to measure time intervals. Similar to the stopwatch feature on your phone.

time ()
Gets the current time of the stopwatch.

Returns Elapsed time.
Return type fime: ms

pause ()
Pauses the stopwatch.

resume ()
Resumes the stopwatch.

reset ()
Resets the stopwatch time to O.

The run state is unaffected:
« If it was paused, it stays paused (but now at 0).
« If it was running, it stays running (but starting again from 0).

class Datalog ( *headers, name="log’, timestamp=True, extension="csv’, append="False)
Create a file and log data.

Parameters

e headers (coll, col2, ...) — Column headers. These are the names of the data columns.
For example, choose 'time' and 'angle'.

54

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

* name (str)— Name of the file.

* timestamp (bool)— Choose True to add the date and time to the file name. This way,
your file has a unique name. Choose False to omit the timestamp.

* extension (str) - File extension.

* append (bool)— Choose True to reopen an existing data log file and append data to it.
Choose False to clear existing data. If the file does not exist yet, an empty file will be
created either way.

log ( *values)
Saves one or more values on a new line in the file.

Parameters values (object, object, ... ) — One or more objects or values.

By default, this class creates a csv file on the EV3 brick with the name 1og and the current date and time.
For example, if you use this class on 13 February 2020 on 10:07 and 44.431260 seconds, the file is called
log_2020_02_13_10_07_44_431260.csv.

See managing files on the EV3 to learn how to upload the log file back to your computer.
Show/hide example: Logging and visualizing measurements
Example

This example shows how to log the angle of a rotating wheel as time passes.

#!/usr/bin/env pybricks-micropython

from pybricks.ev3devices import Motor

from pybricks.parameters import Port

from pybricks.tools import Datalog, StopWatch, wait

# Create a data log file in the project folder on the EV3 Brick.

# x By default, the file name contains the current date and time, for example:
# log _2020_02_13 10 _07_44_431260.csv

# * You can optionally specify the titles of your data columns. For example,

# if you want to record the motor angles at a given time, you could do:

data = DatalLog('time', 'angle')

# Initialize a motor and make it move
wheel = Motor (Port.B)
wheel.run (500)

# Start a stopwatch to measure elapsed time
watch = StopWatch ()

# Log the time and the motor angle 10 times
for i in range(10):

# Read angle and time

angle = wheel.angle ()

time = watch.time ()

# Each time you use the log() method, a new line with data is added to
# the file. You can add as many values as you like.

# In this example, we save the current time and motor angle:
data.log(time, angle)

# Wait some time so the motor can move a bit
wait (100)

(continues on next page)

55

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors




Pybricks Modules and Examples Version 2.0.0.post1

(continued from previous page)

# You can now upload your file to your computer

In this example, the generated file has the following contents:

time,
3, 0
108,
212,
316,
419,
523,
628,
734,
838,
942,

angle

6
30
71
124
176
228
281
333
385

When you upload the file to your computer as shown above, you can open it in a spreadsheet editor. You can then
generate a graph of the data, as shown in Figure 7.1.

In this example, we see that the motor angle changes slowly at first. Then the angle begins to change faster, and the
graph becomes a straight line. This means that the motor has reached a constant speed. You can verify that the angle
increases by 500 degrees per second.

A|lB| ¢ | o | € | F | & | H | v |
1 [time | angle
2 3 0 200
3 109 7
4 | 214 31 250
5 316 72
6 | 418 125 300
7 | 5211 176
8 | 624 227 = 250
9 7260 278 i
10 828 329 é” 200
11 | 930 380 b
12 E: 150
13 ®
3 | 100
15
16 50
17 o
—:g 0 100 200 300 400 500 600 700 800 900 1000
20 time (ms)
a1

Figure 7.1: Original file contents (left) and a generated graph (right).

Show/hide example: Using the optional arguments
Example

This example shows how to log data beyond just numbers. It also shows how you can use the optional arguments of
the DataLog class to choose the file name and extension.

In this example, t imestamp=False, which means that the date and time are not added to the file name. This can be
convenient because the file name will always be the same. However, this means that the contents of my_file.txt
will be overwritten every time you run this script.

56

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

#!/usr/bin/env pybricks-micropython
from pybricks.parameters import Color
from pybricks.tools import Datalog

# Create a data log file called my_file.txt
data = Datalog('time', 'angle', name='my_file', timestamp=False, extension='txt')

# The log method uses the print () method to add a line of text.
# So, you can do much more than saving numbers. For example:
data.log('Temperature', 25)

data.log('Sunday', 'Monday', 'Tuesday')

data.log({'Kiwi': Color.GREEN}, {'Banana': Color.YELLOW})

# You can upload the file to your computer, but you can also print the data:
print (data)

57

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER 8

robotics — Robotics

Robotics module for the Pybricks API.

class DriveBase (left_motor, right_motor, wheel_diameter, axle_track)
A robotic vehicle with two powered wheels and an optional support wheel or caster.

By specifying the dimensions of your robot, this class makes it easy to drive a given distance in millimeters or
turn by a given number of degrees.

Positive distances and drive speeds mean driving forward. Negative means backward.

Positive angles and turn rates mean turning right. Negative means left. So when viewed from the top, positive
means clockwise and negative means counterclockwise.

Parameters
e left_motor (Motor)— The motor that drives the left wheel.
* right_motor (Motor)— The motor that drives the right wheel.
* wheel_diameter (dimension: mm) — Diameter of the wheels.

* axle_track (dimension: mm) — Distance between the points where both wheels touch
the ground.

Driving for a given distance or by an angle

Use the following commands to drive a given distance, or turn by a given angle.

This is measured using the internal rotation sensors. Because wheels may slip while moving, the traveled
distance and angle are only estimates.

straight (distance)
Drives straight for a given distance and then stops.

Parameters distance (distance: mm) — Distance to travel.

turn (angle)
Turns in place by a given angle and then stops.

58

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Parameters angle (angle: deg) — Angle of the turn.

settings (straight_speed, straight_acceleration, turn_rate, turn_acceleration)
Configures the speed and acceleration used by st raight () and turn ().

If you give no arguments, this returns the current values as a tuple.

You can only change the settings while the robot is stopped. This is either before you begin driving or after
youcall stop ().

Parameters
* straight_speed (speed: mm/s) — Speed of the robot during st raight ().

* straight_acceleration (linear acceleration: mm/s/s) — Acceleration and deceler-
ation of the robot at the start and end of st raight ().

* turn_rate (rotational speed: deg/s) — Turn rate of the robot during t urn ().

* turn_acceleration (rofational acceleration: deg/s/s) — Angular acceleration and
deceleration of the robot at the start and end of turn ().

Drive forever

Use drive () to begin driving at a desired speed and steering.

It keeps going until you use stop () or change course by using drive () again. For example, you can drive
until a sensor is triggered and then stop or turn around.

drive (drive_speed, turn_rate)
Starts driving at the specified speed and turn rate. Both values are measured at the center point between
the wheels of the robot.

Parameters
e drive_speed (speed: mm/s) — Speed of the robot.
e turn_rate (rotational speed: deg/s) — Turn rate of the robot.

stop ()
Stops the robot by letting the motors spin freely.

Measuring

distance ()
Gets the estimated driven distance.

Returns Driven distance since last reset.
Return type distance: mm

angle ()
Gets the estimated rotation angle of the drive base.

Returns Accumulated angle since last reset.
Return type angle: deg

state ()
Gets the state of the robot.

This returns the current distance (), the drive speed, the angle (), and the turn rate.

59

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Returns Distance, drive speed, angle, turn rate
Return type (distance: mm, speed: mm/s, angle: deg, rotational speed: deg/s)

reset ()
Resets the estimated driven distance and angle to 0.

Measuring and validating the robot dimensions

As a first estimate, you can measure the wheel_diameter and the axle_track with a ruler. Because it is
hard to see where the wheels effectively touch the ground, you can estimate the axle_track as the distance
between the midpoint of the wheels.

In practice, most wheels compress slightly under the weight of your robot. To verify, make your robot drive 1000
mm using my_robot .straight (1000) and measure how far it really traveled. Compensate as follows:

* If your robot drives not far enough, decrease the wheel_diameter value slightly.
* If your robot drives too far, increase the wheel_diameter value slightly.

Motor shafts and axles bend slightly under the load of the robot, causing the ground contact point of the wheels
to be closer to the midpoint of your robot. To verify, make your robot turn 360 degrees using my_ robot .
turn (360) and check that it is back in the same place:

* If your robot turns not far enough, increase the axle_track value slightly.
« If your robot turns too far, decrease the ax1le_track value slightly.

When making these adjustments, always adjust the wheel_diameter first, as done above. Be sure to test
both turning and driving straight after you are done.

Using the DriveBase motors individually

Suppose you make a DriveBase object using two Mot or objects called left_motor and right_motor.
You cannot use these motors individually while the DriveBase is active.

The DriveBase is active if it is driving, but also when it is actively holding the wheels in place after a
straight () or turn () command. To deactivate the DriveBase, call stop ().

Advanced Settings

The settings () method is used to adjust commonly used settings like the default speed and acceleration for
straight maneuvers and turns. Use the following attributes to adjust more advanced control setttings.

You can only change the settings while the robot is stopped. This is either before you begin driving or after you
call stop ().

distance_control
The traveled distance and drive speed are controlled by a PID controller. You can use this attribute to
change its settings. See The Control Class for an overview of available methods.

heading_control
The robot turn angle and turn rate are controlled by a PID controller. You can use this attribute to change
its settings. See The Control Class for an overview of available methods.

60

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



CHAPTER 9

media — Sounds and Images

This module describes media such as sound and images that you can use in your projects. Media are divided into
submodules that indicate on which platform they are available.

9.1 media.ev3dev — Sounds and Images

EV3 MicroPython is built on top of ev3dev, which comes with a variety of image and sound files. You can access
them using the classes below.

You can also use your own sound and image files by placing them in your project folder.

9.1.1 Image Files

class ImageFile
Paths to standard EV3 images.

Information

ACCEPT

BACKWARD

61

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

DECLINE

X

FORWARD

LEFT

NO_GO

OT=»

QUESTION_MARK

RIGHT

1 -

STOP_1

O

STOP_2

THUMBS_DOWN

»

THUMBS_UP

62

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

WARNING

LEGO

EV3

EV3

EV3_ICON
7/

Objects

TARGET

Eyes
ANGRY

U0,

BOTTOM _LEFT

BOTTOM_RIGHT

63

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

CRAZY 1
CRAZY 2
DIZZY
DOWN
EVIL

KNOCKED_OUT
MIDDLE LEFT
MIDDLE_ RIGHT

NEUTRAL

PINCHED_LEFT

64

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

PINCHED_MIDDLE

PINCHED_RIGHT

SLEEPING

TIRED_LEFT

TIRED_MIDDLE

TIRED_RIGHT

Up

WINKING

65

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

9.1.2 Sound Files

class SoundFile
Paths to standard EV3 sounds.

Expressions

BOING

Download

BOO

Download

CHEERING

Download

CRUNCHING

Download

CRYING

Download

FANFARE

Download

KUNG_FU

Download

LAUGHING_1

Download

LAUGHING_2

Download

MAGIC_WAND

Download

OUCH

Download

SHOUTING

Download

66

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

SMACK

Download

SNEEZING

Download

SNORING

Download

UH_OH

Download
Information

ACTIVATE

Download

ANALYZE

Download

BACKWARDS

Download

COLOR

Download

DETECTED

Download

DOWN

Download

ERROR

Download

ERROR_ALARM

Download

FLASHING

Download

67

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

FORWARD

Download

LEFT

Download

OBJECT

Download

RIGHT

Download

SEARCHING

Download

START

Download

STOP

Download

TOUCH

Download

TURN

Download

Up

Download
Communication

BRAVO

Download

EV3

Download

FANTASTIC

Download

68

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

GAME_ OVER
Download
GO
Download
GOOD__JOB
Download
GOOD
Download
GOODBYE
Download
HELLO
Download
HI
Download
LEGO
Download
MINDSTORMS
Download
MORNING
Download
NO
Download
OKAY
Download
OKEY_ DOKEY
Download

69

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

SORRY

Download

THANK_YOU

Download

YES

Download
Movement sounds

SPEED_DOWN

Download

SPEED_IDLE

Download

SPEED_UP

Download
Colors

BLACK

Download

BLUE

Download

BROWN

Download

GREEN

Download

RED

Download

WHITE

Download

YELLOW

70

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Download
Mechanical

AIR RELEASE

Download

AIRBRAKE

Download

BACKING_ALERT

Download

HORN_1

Download

HORN_2

Download

LASER

Download

MOTOR_IDLE

Download

MOTOR_START

Download

MOTOR_STOP

Download

RATCHET

Download

SONAR

Download

TICK_TACK

Download

Animal sounds

71

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

CAT_PURR

Download

DOG_BARK 1

Download

DOG_BARK 2

Download

DOG_GROWL

Download

DOG_SNIFF

Download

DOG_WHINE

Download

ELEPHANT_CALL

Download

INSECT_BUZZ_1

Download

INSECT_BUZZ_2

Download

INSECT_CHIRP

Download

SNAKE_HISS

Download

SNAKE_RATTLE

Download

T_REX ROAR

Download

Numbers

72

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

ZERO

Download

ONE

Download

TWO

Download

THREE

Download

FOUR

Download

FIVE

Download

SIX

Download

SEVEN

Download

EIGHT

Download

NINE

Download

TEN

Download
System sounds

CLICK

Download

CONF IRM

Download

73

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

GENERAL_ALERT

Download

OVERPOWER

Download

READY

Download

9.1.3 Fonts

class Font (family=None, size=12, bold=False, monospace=False, lang=None, script=None)
Object that represents a font for writing text.

The font object will be a font that is the “best” match based on the parameters given and available fonts installed.
Parameters
* family (str)— The preferred font family or None to use the default value.

* size (int) — The preferred font size. Most fonts have sizes between 6 and 24. This is the
“point” size and not the same as height.

* bold (bool) - When True, prefer bold fonts.

* monospace (bool) — When True prefer monospaced fonts. This is useful for aligning
multiple rows of text.

* lang (str) — A language code, such as 'en' or 'zh-cn' or None to use the default
language.

1

Language codes

Note: Languages depend on installed fonts. Additional language codes are possible and some listed language codes may not have a satisfactory
font.
- 'aa': Afar

— 'af': Afrikaans
— 'an': Aragonese
— 'av': Avaric

— 'ay': Aymara

— 'az-az': Azerbaijani
— 'be': Belarusian
— 'bg': Bulgarian
— 'bi': Bislama

— 'bm': Bambara
— 'br': Breton

— 'bs': Bosnian

— 'bua': Buriat

— 'ca': Catalan

— 'ce': Chechen

74

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

* script (str)— A unicode script identifier such as 'Runr' or None.

DEFAULT = Font ('Lucida', 12)
The default font.

family
Gets the family name of the font.

— 'ch': Chamorro
— 'co': Corsican
— 'crh': Crimean
- 'cs': Czech

— 'csb': Kashubian
- 'cy': Welsh

— 'da': Danish

— 'de': German

- 'ee':Ewe

- 'el': Greek

— 'en': English

— 'eo': Esperanto
— 'es': Spanish

— 'et': Estonian

— 'eu': Basque

— 'ff': Fulah

— 'fi': Finnish

— 'fil': Filipino
— 'f£3': Fijian

— 'fo': Faroese

— '"fr': French

— '"fur': Friulian
— 'fy': Western Frisian
- 'ga':Irish

- 'gd': Gaelic

— 'gl': Galician

- 'gv': Manx

— 'ha': Hausa

— 'haw': Hawaiian
— 'he': Hebrew

— 'ho': Hiri Motu
— 'hr': Croatian

— 'hsb': Upper Sorbian
— 'ht': Haitian

— 'hu': Hungarian
— 'ia': Interlingua

— 'id"': Indonesian

75

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

style
Gets a string describing the font style.

Can be “Regular” or “Bold”.

width
Gets the width of the widest character of the font.

— 'ie': Interlingue

— 'ik': Inupiaq

- 'io':Ido

— 'is':Icelandic

— 'it': Italian

— 'Ja':Japanese

— '"Jjv':Javanese

— 'ki': Kikuyu

— 'kj': Kuanyama

— 'k1': Kalaallisut

— 'ko': Korean

— 'ku-tr': Kurdish
— 'kum': Kumyk

— 'kw': Cornish

— 'kwm': Kwambi

— 'la':Latin

— 'lb': Luxembourgish
— 'lez': Lezghian

- 'lg': Ganda

— '1i':Limburgan

— '1n':Lingala

— '1t': Lithuanian

— 'lv': Latvian

— 'mg': Malagasy

— 'mh': Marshallese

- 'mi': Maori

— 'mk': Macedonian

— 'mn-mn': Mongolian
- 'mo': Moldavian

— 'ms': Malay

— 'mt': Maltese

— 'na': Nauru

— 'nb': Norwegian Bokmal
— 'nds': Low German
— 'ng': Ndonga

— 'nl': Dutch

— 'nn': Norwegian Nynorsk

76

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

height
Gets the height of the font.

text_width (rext)
Gets the width of the text when the text is drawn using this font.

Parameters text (str) - The text.

— 'no': Norwegian

— 'nr': South Ndebele

— 'nso': Northern Sotho
— 'nv': Navajo

— 'ny"': Chichewa

— 'oc': Occitan

- 'om': Oromo

— 'os': Ossetian

— 'pap-an': Papiamento, Netherlands Antilles
— 'pap-aw': Papiamento, Aruba
— 'pl': Polish

— 'pt': Portuguese

— 'qu': Quechua

— 'quz': Cusco Quechua
— 'rm': Romansh

— 'rn': Rundi

— 'ro': Romanian

— 'ru': Russian

— 'rw': Kinyarwanda

— 'sc': Sardinian

— 'sco': Scots

— 'se': Northern Sami

'sel': Selkup

- 'sg': Sango

— 'sk': Slovak

— 'sl1': Slovenian

— 'sm': Samoan

— 'sma': Southern Sami
— 'smj': Lule Sami
— 'smn': Inari Sami
— 'sms': Skolt Sami
— 'sn': Shona

— 'so': Somali

— 'sqg': Albanian

— 'sr': Serbian

— 'ss': Swati

— 'st': Southern Sotho

77

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Returns The width in pixels.
Return type int

text_height (fext)
Gets the height of the text when the text is drawn using this font.

Parameters text (str)- The text.
Returns The height in pixels.
Return type int

Exploring more fonts

Behind the scenes, Pybricks uses Fontconfig for fonts. The Fontconfig command line tools can be used to
explore available fonts in more detail. To do so, go to the ev3dev device browser, right click on your EV3 brick,
and click Open SSH Terminal. Then you can enter one of these commands:

# List available font families.

fc-1list :scalable=false family

# Perform lookup similar to Font.DEFAULT

fc-match :scalable=false:dpi=119:family=Lucida:size=12

(continues on next page)

— 'su': Sundanese
- 'sv': Swedish
— 'sw': Swahili

— 'tk': Turkmen
— 'tl1l': Tagalog

- 'tn': Tswana

- 'to': Tonga
— 'tr': Turkish
- 'ts': Tsonga

— 'ty': Tahitian

— 'uk': Ukrainian

— 'uz': Uzbek
— 'vo': Volapiik
— 'vot': Votic

- 'wa': Walloon

— 'wen': Sorbian

- 'wo': Wolof
— 'xh': Xhosa
— 'yap': Yapese
— 'yi':Yiddish
— 'za':Zhuang

— 'zh-cn': Chinese, China
— 'zh-sg': Chinese, Singapore
— '"zh-tw': Chinese, Taiwan

- 'zu': Zulu

78

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors


https://www.freedesktop.org/wiki/Software/fontconfig/

Pybricks Modules and Examples Version 2.0.0.post1

(continued from previous page)

# Perform lookup similar to Font (size=24,lang=zh-cn)
fc-match :scalable=false:dpi=119:size=24:1lang=zh-cn

Pybricks only allows the use of bitmap fonts (scalable=false) and the screen on the EV3 has 119 pixels
per inch (dpi=119).

9.1.4 Image Manipulation
Instead of drawing directly on the EV3 screen, you can make and interact with image files using the Tmage class
given below.

class Image (source, sub=False)
Object representing a graphics image. This can either be an in-memory copy of an image or the image displayed
on a screen.

Parameters
* source (str or Image)- The source of the image.

If source is a string, then the image will be loaded from the file path given by the string.
Only . png files are supported. As a special case, if the string is _screen_, the image will
be configured to draw directly on the screen.

If an Tmage is given, the new object will contain a copy of the source image object.

* sub (bool)-If subis True, then the image object will act as a sub-image of the source
image (this only works if the type of source is Tmage and not when itis a str).

Additional keyword arguments x1, y1, x2, y2 are needed when sub=True. These specify
the top-left and bottom-right coordinates in the source image that will be used as the
bounds for the sub-image.

static empty (width=<screen width>, height=<screen height>)
Creates a new empty Image object.

Parameters

e width (int) — The width of the image in pixels.

* height (int)— The height of the image in pixels.
Returns A new image with all pixels setto Color. WHITE.
Return type I/mage
Raises

e TypeError —width or height is not a number.

* ValueError —width or height isless than 1.

e RuntimeError — There was a problem allocating a new image.

Drawing text

There are two ways to draw text on images. draw_text () lets text be placed precisely on the image or
print () can be used to automatically print text on a new line.

79

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

draw_text (x,y, text, text_color=Color. BLACK, background_color=None)
Draws text on this image.

The most recent font set using set_ font () will be used or Font . DEFAULT if no font has been set yet.
Parameters
¢ x (int)— The x-axis value where the left side of the text will start.
* y (int) — The y-axis value where the top of the text will start.
¢ text (str)- The text to draw.
* text_color (Color)— The color used for drawing the text.

* background_color (Color) — The color used to fill the rectangle behind the text or
None for transparent background.

print (*args, sep="", end="\n’)
Prints a line of text on this image.

This method works like the builtin print () function, but it writes on this image instead.

You can set the font using set_ font (). If no font has been set, Font . DEFAULT will be used. The
text is always printed used black text with a white background.

Unlike the builtin print (), the text does not wrap if it is too wide to fit on this image. It just gets cut
off. But if the text would go off of the bottom of this image, the entire image is scrolled up and the text is
printed in the new blank area at the bottom of this image.

Parameters
* % (object) — Zero or more objects to print.
* sep (str)— Separator that will be placed between each object that is printed.
* end (str)— End of line that will be printed after the last object.

set_font (font)
Sets the font used for writing on this image.

The font is used for both draw_text () and print ().

Parameters font (Font) — The font to use.

Drawing images

A copy of another image can be drawn on an image. Also consider using sub-images to copy part of an image.

draw_image (x, y, source, transparent=None)
Draws the source image on this image.

Parameters
* x (int)— The x-axis value where the left side of the image will start.
e y (int) — The y-axis value where the top of the image will start.

* source (Image or str)- The source Tmage. If the argument is a string, then the
source image is loaded from file.

* transparent (Color) — The color of image to treat as transparent or None for no
transparency.

80

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Drawing shapes

These are the methods to draw basic shapes, including points, lines, rectangles and circles.

draw_pixel (x, y, color=Color.BLACK)
Draws a single pixel on this image.

Parameters
e x (int) — The x coordinate of the pixel.
e y (int)— The y coordinate of the pixel.
e color (Color)— The color of the pixel.

draw_line (x/, yl, x2, y2, width=1, color=Color. BLACK)
Draws a line on this image.

Parameters
e x1 (int) — The x coordinate of the starting point of the line.
e y1 (int) - The y coordinate of the starting point of the line.
* %2 (int) — The x coordinate of the ending point of the line.
* y2 (int) - The y coordinate of the ending point of the line.
e width (int) — The width of the line in pixels.
¢ color (Color)— The color of the line.

draw_box (x1, yl, x2, y2, r=0, fill=False, color=Color. BLACK)
Draws a box on this image.

Parameters
¢ x1 (int) - The x coordinate of the left side of the box.
* y1 (int)— The y coordinate of the top of the box.
* x2 (int) — The x coordinate of the right side of the box.
e y2 (int) — The y coordinate of the bottom of the box.
¢ r (int)— The radius of the corners of the box.

e £i1l (bool)—If True, the box will be filled with color, otherwise only the outline of
the box will be drawn.

¢ color (Color)— The color of the box.

draw_circle (x,y, r, fill=False, color=Color.BLACK )
Draws a circle on this image.

Parameters
¢ x (int) - The x coordinate of the center of the circle.
e y (int) — The y coordinate of the center of the circle.
e r (int)— The radius of the circle.

e £i1l (bool)—If True, the circle will be filled with color, otherwise only the circum-
ference will be drawn.

¢ color (Color) - The color of the circle.

81

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Image properties

width
Gets the width of this image in pixels.

height
Gets the height of this image in pixels.

Replacing the entire image

clear ()
Clears this image. All pixels on this image will be set to Color. WHITE.

load_image (source)
Clears this image, then draws the source image centered in this image.

Parameters source (Image or str)-Thesource Image. If the argument is a string, then
the source image is loaded from file.

Saving the image

save (filename)
Saves this image as a . png file.

Parameters filename (str)— The path to the file to be saved.
Raises
e TypeError — filename is not a string.

* OSError — There was a problem saving the file.

82

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



cHAaPTER 10

messaging — Messaging

An EV3 Brick can send information to another EV3 Brick using Bluetooth. This page shows you how to connect
multiple bricks and how to write scripts to send messages between them.

10.1 Pairing two EV3 Bricks

Before two EV3 bricks can exchange messages, they must be paired. You’ll need to do this only the first time. First,
activate bluetooth on all EV3 bricks as shown in Figure 10.1.

1 2 3 4
Open networks Select Bluetooth Turn power on Make it visible

$ED

[0 ss—— |
k: Eluetooth

= ‘Wireless and MNetwo ks Eluetooth
>

—Stausiio comecions _ Forees T 5}
Battery > WiFi >
Open Foberta Lab > All Network :

D

File Browser
Device Erowser

Powered =

Start Scan
Devices

Figure 10.1: Turn on Bluetooth and make Bluetooth visible.

Now you can make one EV3 Brick search for the other and pair with it, as shown in Figure 10.2.

Once they are paired, do not click connect in the menu that appears. The connection will be made when you run your
programs, as described below.

When you scan for Bluetooth devices, you’ll see a list of device names. By default, all EV3 Bricks are named ev3dev.
Click here to learn how to change that name. This makes it easy to tell them apart.

Repeat the steps in Figure 10.2 if you want to pair more than two EV3 Bricks.

83

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

Q @ ©! @

Scan for devices Select your EV3 Pair EV3 Bricks Confirm passkey

Figure 10.2: Pairing one EV3 Brick to another EV3 Brick.

10.2 Server and Client

A wireless network consists of EV3 Bricks acting as servers or clients. A example with one server and one client is

shown in Figure 10.3. Messages can be sent in both ways: the server can send a message to the client, and the client
can send a message to the server.

Server

server = BluetoothMailboxServer()
mbox = TextMailbox('greeting', server)

server.wait for connection()

mbox.wait()
mbox.send('hello to you!')

'greeting' 'greeting'

'Hello!" 'Hello to you!"

Client

client = BluetoothMailboxClient()
mbox = TextMailbox('greeting', client)

client.connect('ev3dev')

mbox.send('hello!"')

Figure 10.3: An example network with one server and one clients.

Show/hide full server example
Example: EV3 Bluetooth Server.

This is the full version of the excerpt shown in Figure 10.3.

84

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

#!/usr/bin/env pybricks-micropython

# Before running this program, make sure the client and server EV3 bricks are
# paired using Bluetooth, but do NOT connect them. The program will take care
# of establishing the connection.

# The server must be started before the client!
from pybricks.messaging import BluetoothMailboxServer, TextMailbox

server = BluetoothMailboxServer ()
mbox = TextMailbox('greeting', server)

# The server must be started before the client!
print ('waiting for connection...')
server.walt_for_connection ()

print ('connected!"')

# In this program, the server waits for the client to send the first message
# and then sends a reply.

mbox.wait ()

print (mbox.read())

mbox.send('hello to you!'")

Show/hide full client example
Example: EV3 Bluetooth Client.

This is the full version of the excerpt shown in Figure 10.3.

#!/usr/bin/env pybricks-micropython

# Before running this program, make sure the client and server EV3 bricks are
# paired using Bluetooth, but do NOT connect them. The program will take care
# of establishing the connection.

# The server must be started before the client!
from pybricks.messaging import BluetoothMailboxClient, TextMailbox

# This is the name of the remote EV3 or PC we are connecting to.
SERVER = 'ev3dev'

client = BluetoothMailboxClient ()
mbox = TextMailbox('greeting', client)

print ('establishing connection..."')
client.connect (SERVER)
print ('connected!"')

# In this program, the client sends the first message and then waits for the
# server to reply.

mbox.send ('hello!")

mbox.wait ()

print (mbox.read())

The only difference between the client and the server is which one initiates the connection at the beginning of the
program:

85

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

* The server must always be started first. It uses the BluetoothMailboxServer class. Then it waits for
clients using the wait_for_connection method.

* The client uses the BluetoothMailboxClient class. It connects to the server using the connect method.
* After that, sending and receiving messages is done in the same way on both EV3 Bricks.

class BluetoothMailboxServer
Object that represents a Bluetooth connection from one or more remote EV3s.

The remote EV3s can either be running MicroPython or the standard EV3 firmware.
A “server” waits for a “client” to connect to it.

wait_for_ connection (count=1)
Waits for a BluetoothMailboxClient on aremote device to connect.

Parameters count (int) - The number of remote connections to wait for.
Raises OSError — There was a problem establishing the connection.

close ()
Closes all connections.

class BluetoothMailboxClient
Object that represents a Bluetooth connection to one or more remote EV3s.

The remote EV3s can either be running MicroPython or the standard EV3 firmware.
A “client” initiates a connection to a waiting “server”.

connect (brick)
Connects to an BluetoothMailboxServer on another device.

The remote device must be paired and waiting for a connection. See BluetoothMailboxServer.
wait_for_connection().

Parameters brick (str)— The name or Bluetooth address of the remote EV3 to connect to.
Raises OSError — There was a problem establishing the connection.

server_close()
Closes all connections.

10.3 Mailboxes

Mailboxes are used to send data to and from other EV3 Bricks.

A Mailbox has a name, similar to the “subject” of an email. If two EV3 Bricks have a Mailbox with the same name,
they can send messages between them. Each EV3 Brick can read its own Mailbox, and send messages to the Mailbox
on the other EV3 Brick.

Depending on the type of messages you would like to exchange (bytes, booleans, numbers, or text), you can choose
one of the Mailboxes below.

class Mailbox (name, connection, encode=None, decode=None)
Object that represents a mailbox containing data.

You can read data that is delivered by other EV3 bricks, or send data to other bricks that have the same mailbox.

By default, the mailbox reads and send only bytes. To send other data, you can provide an encode function
that encodes your Python object into bytes, and a decode function to convert bytes back to a Python object.

Parameters

86

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

¢ name (str)— The name of this mailbox.

* connection — A connection object such as BluetoothMailboxClient.
* encode (callable) - Function that encodes a Python object to bytes.

* decode (callable) - Function that creates a new Python object from bytes.

read ()
Gets the current value of the mailbox.

Returns The current value or None if the mailbox is empty.

send (value, brick=None)
Sends a value to this mailbox on connected devices.

Parameters
¢ value — The value that will be delivered to the mailbox.

e brick (str)— The name or Bluetooth address of the brick or None to to broadcast to
all connected devices.

Raises OSError — There is a problem with the connection.

wait ()
Waits for the mailbox to be updated by remote device.

wait_new ()
Waits for a new value to be delivered to the mailbox that is not equal to the current value in the mailbox.

Returns The new value.

class LogicMailbox (name, connection)
Object that represents a mailbox containing boolean data.

This works just like a regular Ma i 1 box, but values must be True or False.
This is compatible with the “logic” mailbox type in EV3-G.
Parameters
* name (str) - The name of this mailbox.
* connection — A connection object such as BluetoothMailboxClient.

class NumericMailbox (name, connection)
Object that represents a mailbox containing numeric data.

This works just like a regular Ma i 1 box, but values must be a number, such as 15 or 12.345
This is compatible with the “numeric” mailbox type in EV3-G.
Parameters
* name (str) - The name of this mailbox.
* connection — A connection object such as BluetoothMailboxClient.

class TextMailbox (name, connection)
Object that represents a mailbox containing text data.

This works just like a regular Mailbox, but data must be a string, such as 'hello!' or 'My name is
EV3'.

This is compatible with the “text” mailbox type in EV3-G.

Parameters

87

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

¢ name (str)— The name of this mailbox.

* connection — A connection object such as BluetoothMailboxClient.

10.4 Making bigger networks

The classes in this module are not limited to just two EV3 Bricks. for example, you can add more clients to your
network. An example with pseudo-code is shown in Figure 10.4.

server = BluetoothMailboxServer() Server
server.wait for_ connection(2)

temp = NumericMailbox('temp', server)
condition = TextMailbox('cond', server)
ambient = NumericMailbox('amb', server)

condition.send('Sunny"')

'‘cond'
'Sunny" amb,
35
‘temp’
25.3
Client B
client = BluetoothMailboxClient() client = BluetoothMailboxClient()
client.connect('ev3dev') client.connect('ev3idev')
temp = NumericMailbox('temp', client) ambient = NumericMailbox('amb', client)

condition = TextMailbox('cond', client)
ambient.send(35)

temp.send(25.3)

Figure 10.4: An example network with one server and two clients.

88

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



cHAPTER 11

Signals and Units

Many commands allow you to specify arguments in terms of well-known physical quantities. This page gives an
overview of each quantity and its unit.

11.1 Time

11.1.1 time: ms

All time and duration values are measured in milliseconds (ms).

For example, the duration of motion with run_t ime, and the duration of wa it are specified in milliseconds.

11.2 Angles and angular motion

11.2.1 angle: deg

All angles are measured in degrees (deg). One full rotation corresponds to 360 degrees.

For example, the angle values of a Motor or the GyroSensor are expressed in degrees.

11.2.2 rotational speed: deg/s

Rotational speed, or angular velocity describes how fast something rotates, expressed as the number of degrees per
second (deg/s).

For example, the rotational speed values of a Mot or or the GyroSensor are expressed in degrees per second.

While we recommend working with degrees per second in your programs, you can use the following table to convert
between commonly used units.

89

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

deg/s | rpm
ldeg/s= | 1 1/6=0.167
I rpm = 6 1

11.2.3 rotational acceleration: deg/s/s

Rotational acceleration, or angular acceleration describes how fast the rotational speed changes. This is expressed
as the change of the number of degrees per second, during one second (deg/s/s). This is also commonly written as
deg/s®.

For example, you can adjust the rotational acceleration setting of a Mot or to change how smoothly or how quickly it
reaches the constant speed set point.

11.3 Distance and linear motion

11.3.1 distance: mm

Distances are expressed in millimeters (mm) whenever possible.
For example, the distance value of the Ul t rasonicSensor is measured in millimeters.

While we recommend working with millimeters in your programs, you can use the following table to convert between
commonly used units.

mm | cm inch
lmm= | 1 0.1 0.0394
lcm= 10 1 0.394
linch= | 254 | 254 | 1

11.3.2 dimension: mm

Dimensions are expressed in millimeters (mm), just like distances.

For example, the diameter of a wheel is measured in millimeters.

11.3.3 speed: mm/s

Linear speeds are expressed as millimeters per second (mm/s).

For example, the speed of a robotic vehicle is expressed in mm/s.

11.3.4 linear acceleration: mm/s/s
Linear acceleration describes how fast the speed changes. This is expressed as the change of the millimeters per
second, during one second (deg/s/s). This is also commonly written as mm,/s2.

For example, you can adjust the acceleration setting of a DriveBase to change how smoothly or how quickly it
reaches the constant speed set point.

90

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

11.4 Approximate and relative units

11.4.1 percentage: %

Some signals do not have specific units. They range from a minimum (0%) to a maximum (100%). Specifics type of
percentages are relative distances or brightness.

Another example is the sound volume, which ranges from 0% (silent) to 100% (loudest).

11.4.2 relative distance: %

Some distance measurements do not provide an accurate value with a specific unit, but they range from very close
(0%) to very far (100%). These are referred to as relative distances.

For example, the distance value of the TnfraredSensor is arelative distance.

11.4.3 brightness: %
The perceived brightness of a light is expressed as a percentage. It is 0% when the light is off and 100% when the light

is fully on. When you choose 50%, this means that the light is perceived as approximately half as bright to the human
eye.

11.5 Force

11.5.1 force: N

Force values are expressed in newtons (N).

While we recommend working with newtons in your programs, you can use the following table to convert to and from
other units.

mN [N Ibf
ImN= |1 0.001 | 2.248 - 10~ %
IN= 1000 | 1 0.2248
1Ibf= | 4448 | 4448 | 1

11.6 Electricity

11.6.1 voltage: mV

Voltages are expressed in millivolt (mV).

For example, you can check the voltage of the battery.
11.6.2 current: mA

Electrical currents are expressed in milliampere (mA).

For example, you can check the current supplied by the battery.

91

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

11.6.3 energy: J

Stored energy or energy consumption can be expressed in Joules (J).

11.6.4 power: mW

Power is the rate at which energy is stored or consumed. It is expressed in milliwatt (mW).

11.7 Ambient environment

11.7.1 frequency: Hz

Sound frequencies are expressed in Hertz (Hz).

For example, you can choose the frequency of a beep to change the pitch.

11.7.2 temperature: °C
Temperature is measured in degrees Celcius (°C). To convert to degrees Fahrenheit (°F) or Kelvin (K), you can use the
following conversion formulas:

F=C-2+32.

K =C+273.15.

92

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



cHAPTER 12

More about Motors

12.1 The Control Class

The Motor class uses PID control to accurately track your commanded target angles. Similarly, the DriveBase
class uses two of such controllers: one to control the heading and one to control the traveled distance.

You can change the control settings through the following attributes, which are instances of the Control class given
below.:

e Motor.control
* DriveBase.heading_control
e DriveBase.distance_control

You can only change the settings while the controller is stopped. For example, you can set the settings at the beginning
of your program. Alternatively, first call stop () to make your Motor or DriveBase stop, and then change the
settings.

class Control
Class to interact with PID controller and settings.

scale
Scaling factor between the controlled integer variable and the physical output. For example, for a single
motor this is the number of encoder pulses per degree of rotation.

Status

done ()
Checks if an ongoing command or maneuver is done.

Returns True if the command is done, False if not.

Return type bool

93

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

stalled()
Checks if the controller is currently stalled.

A controller is stalled when it cannot reach the target speed or position, even with the maximum actuation
signal.

Returns True if the controller is stalled, False if not.

Return type bool

Settings

limits (speed, acceleration, actuation)
Configures the maximum speed, acceleration, and actuation.

If no arguments are given, this will return the current values.
Parameters

» speed (rotational speed: deg/s or speed: mm/s) — Maximum speed. All speed commands
will be capped to this value.

* acceleration (rotational acceleration: deg/s/s or linear acceleration: mm/s/s) — Max-
imum acceleration.

* actuation (percentage: %)— Maximum actuation as percentage of absolute maximum.

pid (kp, ki, kd, integral_range, integral_rate, feed_forward)
Gets or sets the PID values for position and speed control.

If no arguments are given, this will return the current values.
Parameters
* kp (int) — Proportional position (or integral speed) control constant.
* ki (int) — Integral position control constant.
* kd (int) — Derivative position (or proportional speed) control constant.

* integral_range (angle: deg or distance: mm) — Region around the target angle or
distance, in which integral control errors are accumulated.

e integral_rate (rotational speed: deg/s or speed: mm/s) — Maximum rate at which
the error integral is allowed to grow.

» feed_ forward (percentage: %) — This adds a feed forward signal to the PID feedback
signal, in the direction of the speed reference. This value is expressed as a percentage of
the absolute maximum duty cycle.

target_tolerances (speed, position)
Gets or sets the tolerances that say when a maneuver is done.

If no arguments are given, this will return the current values.
Parameters

* speed (rotational speed: deg/s or speed: mm/s) — Allowed deviation from zero speed
before motion is considered complete.

* position (angle: deg or distance: mm) — Allowed deviation from the target before
motion is considered complete.

94

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

stall_tolerances (speed, time)
Gets or sets stalling tolerances.

If no arguments are given, this will return the current values.
Parameters

* speed (rotational speed: deg/s or speed: mm/s) —If the controller cannot reach this speed
for some t ime even with maximum actuation, it is stalled.

* time (time: ms) — How long the controller has to be below this minimum speed before
we say it is stalled.

95

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Python Module Index

P

pybricks.ev3devices, 28
pybricks.hubs, 18
pybricks.iodevices, 41
pybricks.media, 61
pybricks.media.ev3dev, 61
pybricks.messaging, 83
pybricks.nxtdevices, 35
pybricks.parameters, 50
pybricks.robotics, 58
pybricks.tools, 54

96

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Index

A

active() (AnalogSensor method), 42

ambient() (ColorSensor method), 31, 36
ambient() (LightSensor method), 36
AnalogSensor (class in pybricks.iodevices), 42
angle() (DriveBase method), 59

angle() (GyroSensor method), 34

angle() (Motor method), 29

B

beacon() (InfraredSensor method), 32

beep() (EV3Brick.speaker method), 19

BluetoothMailboxClient (class in pybricks.messaging),
86

BluetoothMailboxServer (class in pybricks.messaging),
86

brake() (Motor method), 29

Button (class in pybricks.parameters), 53

Button.BEACON (in module pybricks.parameters), 53

Button.CENTER (in module pybricks.parameters), 53

Button.DOWN (in module pybricks.parameters), 53

Button.LEFT (in module pybricks.parameters), 53

Button.LEFT_DOWN (in module pybricks.parameters),
53

Button.LEFT_UP (in module pybricks.parameters), 53

Button.RIGHT (in module pybricks.parameters), 53

Button.RIGHT_DOWN (in module pybricks.parameters),
53

Button.RIGHT_UP (in module pybricks.parameters), 53

Button.UP (in module pybricks.parameters), 53

buttons() (InfraredSensor method), 32

C

clear() (EV3Brick.screen method), 23

clear() (Image method), 82

clear() (UARTDevice method), 46

close() (BluetoothMailboxServer method), 86
Color (class in pybricks.parameters), 52
color() (ColorSensor method), 31, 36

Color.BLACK (in module pybricks.parameters), 52
Color.BLUE (in module pybricks.parameters), 52
Color.BROWN (in module pybricks.parameters), 52
Color.GREEN (in module pybricks.parameters), 52
Color.ORANGE (in module pybricks.parameters), 53
Color.PURPLE (in module pybricks.parameters), 53
Color.RED (in module pybricks.parameters), 52
Color.WHITE (in module pybricks.parameters), 52
Color. YELLOW (in module pybricks.parameters), 52
ColorSensor (class in pybricks.ev3devices), 31
ColorSensor (class in pybricks.nxtdevices), 36
connect() (BluetoothMailboxClient method), 86
Control (class in pybricks._common), 93
control (Motor attribute), 30
Control.scale (in module pybricks._common), 93
conversion() (VernierAdapter method), 39
current() (pybricks.hubs.EV3Brick.battery class method),
27

D

DatalLog (class in pybricks.tools), 54

dc() (Motor method), 30

DEFAULT (Font attribute), 75

Direction (class in pybricks.parameters), 50

Direction. CLOCKWISE (in module
bricks.parameters), 50

Direction. COUNTERCLOCKWISE (in module py-
bricks.parameters), 50

distance() (DriveBase method), 59

distance() (InfraredSensor method), 32

distance() (UltrasonicSensor method), 33, 37

distance_control (DriveBase attribute), 60

done() (Control method), 93

draw_box() (EV3Brick.screen method), 26

draw_box() (Image method), 81

draw_circle() (EV3Brick.screen method), 26

draw_circle() (Image method), 81

draw_image() (EV3Brick.screen method), 25

draw_image() (Image method), 80

draw_line() (EV3Brick.screen method), 25

py-

97

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples

Version 2.0.0.post1

draw_line() (Image method), 81
draw_pixel() (EV3Brick.screen method), 25
draw_pixel() (Image method), 81
draw_text() (EV3Brick.screen method), 23
draw_text() (Image method), 79

drive() (DriveBase method), 59

DriveBase (class in pybricks.robotics), 58

E

empty() (Image static method), 79
EnergyMeter (class in pybricks.nxtdevices), 38
EV3Brick (class in pybricks.hubs), 18
Ev3devSensor (class in pybricks.iodevices), 47

F

family (Font attribute), 75
Font (class in pybricks.media.ev3dev), 74

G

GyroSensor (class in pybricks.ev3devices), 33

H

heading_control (DriveBase attribute), 60
height (EV3Brick.screen attribute), 27
height (Font attribute), 76

height (Image attribute), 82

hold() (Motor method), 29

ImageFile.EV3 (in module pybricks.media.ev3dev), 63

ImageFile. EV3_ICON (in module py-
bricks.media.ev3dev), 63

ImageFile. EVIL (in module pybricks.media.ev3dev), 64

ImageFile. FORWARD (in module pPy-
bricks.media.ev3dev), 62
ImageFile. KNOCKED_OUT (in module py-

bricks.media.ev3dev), 64
ImageFile. LEFT (in module pybricks.media.ev3dev), 62

ImageFile MIDDLE_LEFT (in module py-
bricks.media.ev3dev), 64

ImageFile MIDDLE_RIGHT (in module py-
bricks.media.ev3dev), 64

ImageFile NEUTRAL (in module py-

bricks.media.ev3dev), 64
ImageFile. NO_GO (in module pybricks.media.ev3dev),
62

ImageFile. PINCHED_LEFT (in module py-
bricks.media.ev3dev), 64

ImageFile PINCHED _MIDDLE (in module py-
bricks.media.ev3dev), 65

ImageFile. PINCHED_RIGHT (in  module  py-
bricks.media.ev3dev), 65

ImageFile. QUESTION_MARK (in  module py-

bricks.media.ev3dev), 62

ImageFile. RIGHT (in module pybricks.media.ev3dev),
62

ImageFile. SLEEPING (in
bricks.media.ev3dev), 65

ImageFile.STOP_1 (in module pybricks.media.ev3dev),

module py-

I2CDevice (class in pybricks.iodevices), 43 62

Image (class in pybricks.media.ev3dev), 79 ImageFile.STOP_2 (in module pybricks.media.ev3dev),

ImageFile (class in pybricks.media.ev3dev), 61 62

ImageFile. ACCEPT (in module pybricks.media.ev3dev), ImageFile. TARGET (in module pybricks.media.ev3dev),
61 63

ImageFile. ANGRY (in module pybricks.media.ev3dev), ImageFile. THUMBS_DOWN (in  module  py-
63 bricks.media.ev3dev), 62

ImageFile. AWAKE (in module pybricks.media.ev3dev), ImageFile THUMBS_UP (in module py-
63 bricks.media.ev3dev), 62

ImageFile. BACKWARD (in module py- ImageFile. TIRED_LEFT (in module py-
bricks.media.ev3dev), 61 bricks.media.ev3dev), 65

ImageFile. BOTTOM_LEFT (in module py- ImageFile. TIRED_MIDDLE (in module py-
bricks.media.ev3dev), 63 bricks.media.ev3dev), 65

ImageFile. BOTTOM_RIGHT (in  module  py- ImageFile. TIRED_RIGHT (in module py-
bricks.media.ev3dev), 63 bricks.media.ev3dev), 65

ImageFile. CRAZY_1 (in module py- ImageFile.UP (in module pybricks.media.ev3dev), 65
bricks.media.ev3dev), 63 ImageFile. WARNING (in module py-

ImageFile. CRAZY_2 (in module py- bricks.media.ev3dev), 63
bricks.media.ev3dev), 64 ImageFile. WINKING (in module py-

ImageFile. DECLINE (in module py- bricks.media.ev3dev), 65
bricks.media.ev3dev), 61 InfraredSensor (class in pybricks.ev3devices), 32

ImageFile. DIZZY (in module pybricks.media.ev3dev), 64 input() (EnergyMeter method), 39

ImageFile DOWN (in module pybricks.media.ev3dev), intensity() (SoundSensor method), 38
64

98

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples

Version 2.0.0.post1

K

keypad() (InfraredSensor method), 32

L

LightSensor (class in pybricks.nxtdevices), 36
limits() (Control method), 94

load_image() (EV3Brick.screen method), 24
load_image() (Image method), 82

log() (DatalLog method), 55

LogicMailbox (class in pybricks.messaging), 87
LUMPDevice (class in pybricks.iodevices), 41

M

Mailbox (class in pybricks.messaging), 86
Motor (class in pybricks.ev3devices), 28

N

NumericMailbox (class in pybricks.messaging), 87

O

off() (pybricks.hubs.EV3Brick.light class method), 19

off() (pybricks.nxtdevices.ColorSensor.light class
method), 37

on() (pybricks.hubs.EV3Brick.light class method), 19

pybricks.media (module), 61
pybricks.media.ev3dev (module), 61
pybricks.messaging (module), 83
pybricks.nxtdevices (module), 35
pybricks.parameters (module), 50
pybricks.robotics (module), 58
pybricks.tools (module), 54

R

read() (Ev3devSensor method), 47
read() (I2CDevice method), 43

read() (LUMPDevice method), 41
read() (Mailbox method), 87

read() (UARTDevice method), 45
read_all() (UARTDevice method), 45
reflection() (ColorSensor method), 32, 37
reflection() (LightSensor method), 36
reset() (DriveBase method), 60

reset() (StopWatch method), 54
reset_angle() (GyroSensor method), 34
reset_angle() (Motor method), 29
resistance() (AnalogSensor method), 42
resume() (StopWatch method), 54

rgb() (ColorSensor method), 32, 37
run() (Motor method), 29

on() (pybricks.nxtdevices.ColorSensor.light class  run_angle() (Motor method), 29

method), 37 run_target() (Motor method), 30
output() (EnergyMeter method), 39 run_time() (Motor method), 29
= run_until_stalled() (Motor method), 30
passive() (AnalogSensor method), 42 S
pause() (StopWatch method), 54 save() (EV3Brick.screen method), 27
pid() (Control method), 94 save() (Image method), 82
play_file() (EV3Brick.speaker method), 20 say() (EV3Brick.speaker method), 20
play_notes() (EV3Brick.speaker method), 19 send() (Mailbox method), 87
Port (class in pybricks.parameters), 50 sensor_index (Ev3devSensor attribute), 47
Port.A (in module pybricks.parameters), 50 server_close() (BluetoothMailboxClient method), 86
Port.B (in module pybricks.parameters), 50 set_font() (EV3Brick.screen method), 24
Port.C (in module pybricks.parameters), 50 set_font() (Image method), 80
Port.D (in module pybricks.parameters), 50 set_speech_options() (EV3Brick.speaker method), 20
Port.S1 (in module pybricks.parameters), 50 set_volume() (EV3Brick.speaker method), 23
Port.S2 (in module pybricks.parameters), 50 settings() (DriveBase method), 59
Port.S3 (in module pybricks.parameters), 50 SoundFile (class in pybricks.media.ev3dev), 66
Port.S4 (in module pybricks.parameters), 50 SoundFile.ACTIVATE (in module py-
port_index (Ev3devSensor attribute), 47 bricks.media.ev3dev), 67
presence() (UltrasonicSensor method), 33 SoundFile. AIR_RELEASE (in module py-
pressed() (pybricks.hubs.EV3Brick.buttons class bricks.media.ev3dev), 71

method), 18 SoundFile. AIRBRAKE (in module py-
pressed() (TouchSensor method), 31, 35 bricks.media.ev3dev), 71
print() (EV3Brick.screen method), 23 SoundFile. ANALYZE (in module py-
print() (Image method), 80 bricks.media.ev3dev), 67
pybricks.ev3devices (module), 28 SoundFile. BACKING_ALERT  (in  module  py-
pybricks.hubs (module), 18 bricks.media.ev3dev), 71
pybricks.iodevices (module), 41

99

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples

Version 2.0.0.post1

SoundFile. BACKWARDS (in
bricks.media.ev3dev), 67

SoundFile. BLACK (in module pybricks.media.ev3dev),
70

SoundFile.BLUE (in module pybricks.media.ev3dev), 70

SoundFile.BOING (in module pybricks.media.ev3dev),
66

SoundFile.BOO (in module pybricks.media.ev3dev), 66

SoundFile. BRAVO (in module pybricks.media.ev3dev),

module py-

68

SoundFile. BROWN (in module pybricks.media.ev3dev),
70

SoundFile.CAT_PURR (in module py-
bricks.media.ev3dev), 71

SoundFile. CHEERING (in module py-

bricks.media.ev3dev), 66
SoundFile.CLICK (in module pybricks.media.ev3dev),

73

SoundFile.COLOR (in module pybricks.media.ev3dev),
67

SoundFile. CONFIRM (in module py-
bricks.media.ev3dev), 73

SoundFile. CRUNCHING (in module py-

bricks.media.ev3dev), 66
SoundFile.CRYING (in module pybricks.media.ev3dev),

66

SoundFile. DETECTED (in module py-
bricks.media.ev3dev), 67

SoundFile. DOG_BARK _1 (in module py-
bricks.media.ev3dev), 72

SoundFile. DOG_BARK_2 (in module py-
bricks.media.ev3dev), 72

SoundFile. DOG_GROWL (in module py-
bricks.media.ev3dev), 72

SoundFile. DOG_SNIFF (in module py-
bricks.media.ev3dev), 72

SoundFile. DOG_WHINE (in module py-

bricks.media.ev3dev), 72

SoundFile. DOWN (in module pybricks.media.ev3dev),
67

SoundFile.EIGHT (in module pybricks.media.ev3dev),
73

SoundFile. ELEPHANT_CALL  (in
bricks.media.ev3dev), 72

SoundFile.ERROR (in module pybricks.media.ev3dev),
67

SoundFile. ERROR_ALARM (in module
bricks.media.ev3dev), 67

SoundFile.EV3 (in module pybricks.media.ev3dev), 68

module  py-

py-

SoundFile. FANFARE (in module py-
bricks.media.ev3dev), 66
SoundFile. FANTASTIC (in module py-

bricks.media.ev3dev), 68
SoundFile.FIVE (in module pybricks.media.ev3dev), 73

SoundFile. FLASHING (in module py-
bricks.media.ev3dev), 67
SoundFile. FORWARD (in module py-

bricks.media.ev3dev), 67
SoundFile.FOUR (in module pybricks.media.ev3dev), 73

SoundFile. GAME_OVER (in module py-
bricks.media.ev3dev), 68
SoundFile. GENERAL_ALERT (in  module py-

bricks.media.ev3dev), 73
SoundFile.GO (in module pybricks.media.ev3dev), 69
SoundFile.GOOD (in module pybricks.media.ev3dev), 69

SoundFile. GOOD_JOB (in module py-
bricks.media.ev3dev), 69
SoundFile. GOODBYE (in module py-

bricks.media.ev3dev), 69

SoundFile.GREEN (in module pybricks.media.ev3dev),
70

SoundFile. HELLO (in module pybricks.media.ev3dev),
69

SoundFile.HI (in module pybricks.media.ev3dev), 69

SoundFile. HORN_1 (in module pybricks.media.ev3dev),

71

SoundFile. HORN_2 (in module pybricks.media.ev3dev),
71

SoundFile. INSECT_BUZZ _1 (in module py-
bricks.media.ev3dev), 72

SoundFile.INSECT _BUZZ_2 (in module py-
bricks.media.ev3dev), 72

SoundFile.INSECT_CHIRP (in module py-
bricks.media.ev3dev), 72

SoundFile. KUNG_FU (in module py-

bricks.media.ev3dev), 66
SoundFile.LASER (in module pybricks.media.ev3dev),
71

SoundFile. LAUGHING_1 (in module py-
bricks.media.ev3dev), 66
SoundFile. LAUGHING_2 (in module pPy-

bricks.media.ev3dev), 66
SoundFile.LEFT (in module pybricks.media.ev3dev), 68
SoundFile.LEGO (in module pybricks.media.ev3dev), 69

SoundFile. MAGIC_WAND (in module py-
bricks.media.ev3dev), 66

SoundFile. MINDSTORMS (in module py-
bricks.media.ev3dev), 69

SoundFile. MORNING (in module py-
bricks.media.ev3dev), 69

SoundFile. MOTOR_IDLE (in module py-
bricks.media.ev3dev), 71

SoundFile. MOTOR_START (in module py-
bricks.media.ev3dev), 71

SoundFile. MOTOR_STOP (in module py-

bricks.media.ev3dev), 71
SoundFile.NINE (in module pybricks.media.ev3dev), 73
SoundFile.NO (in module pybricks.media.ev3dev), 69

100

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples

Version 2.0.0.post1

SoundFile.OBJECT (in module pybricks.media.ev3dev),
68

SoundFile.OKAY (in module pybricks.media.ev3dev), 69

SoundFile.OKEY_DOKEY (in module py-
bricks.media.ev3dev), 69

SoundFile.ONE (in module pybricks.media.ev3dev), 73

SoundFile.OUCH (in module pybricks.media.ev3dev), 66

SoundFile. OVERPOWER (in module py-
bricks.media.ev3dev), 74
SoundFile. RATCHET (in module py-

bricks.media.ev3dev), 71

SoundFile.READY (in module pybricks.media.ev3dev),
74

SoundFile.RED (in module pybricks.media.ev3dev), 70

SoundFile.RIGHT (in module pybricks.media.ev3dev),
68

SoundFile. SEARCHING (in
bricks.media.ev3dev), 68

SoundFile.SEVEN (in module pybricks.media.ev3dev),
73

SoundFile. SHOUTING (in
bricks.media.ev3dev), 66

SoundFile.SIX (in module pybricks.media.ev3dev), 73

SoundFile.SMACK (in module pybricks.media.ev3dev),
66

module py-

module py-

SoundFile.SNAKE_HISS (in module py-
bricks.media.ev3dev), 72
SoundFile.SNAKE_RATTLE (in module py-
bricks.media.ev3dev), 72
SoundFile.SNEEZING (in module py-
bricks.media.ev3dev), 67
SoundFile.SNORING (in module py-

bricks.media.ev3dev), 67
SoundFile.SONAR (in module pybricks.media.ev3dev),

71
SoundFile.SORRY (in module pybricks.media.ev3dev),
69
SoundFile.SPEED_DOWN (in module py-
bricks.media.ev3dev), 70
SoundFile.SPEED_IDLE (in module py-
bricks.media.ev3dev), 70
SoundFile.SPEED_UP (in module py-

bricks.media.ev3dev), 70

SoundFile.START (in module pybricks.media.ev3dev),
68

SoundFile.STOP (in module pybricks.media.ev3dev), 68

SoundFile.T_REX_ROAR (in module py-
bricks.media.ev3dev), 72

SoundFile.TEN (in module pybricks.media.ev3dev), 73

SoundFile. THANK_YOU (in module py-
bricks.media.ev3dev), 70

SoundFile. THREE (in module pybricks.media.ev3dev),
73

SoundFile. TICK_TACK module

(in py-

bricks.media.ev3dev), 71

SoundFile. TOUCH (in module pybricks.media.ev3dev),
68

SoundFile. TURN (in module pybricks.media.ev3dev), 68

SoundFile.TWO (in module pybricks.media.ev3dev), 73

SoundFile.UH_OH (in module pybricks.media.ev3dev),
67

SoundFile.UP (in module pybricks.media.ev3dev), 68

SoundFile. WHITE (in module pybricks.media.ev3dev),
70

SoundFile. YELLOW (in
bricks.media.ev3dev), 70

SoundFile.YES (in module pybricks.media.ev3dev), 70

SoundFile.ZERO (in module pybricks.media.ev3dev), 72

SoundSensor (class in pybricks.nxtdevices), 37

speed() (GyroSensor method), 33

speed() (Motor method), 29

stall_tolerances() (Control method), 94

stalled() (Control method), 93

state() (DriveBase method), 59

Stop (class in pybricks.parameters), 51

stop() (DriveBase method), 59

stop() (Motor method), 29

Stop.BRAKE (in module pybricks.parameters), 51

Stop.COAST (in module pybricks.parameters), 51

Stop.HOLD (in module pybricks.parameters), 51

StopWatch (class in pybricks.tools), 54

storage() (EnergyMeter method), 38

straight() (DriveBase method), 58

style (Font attribute), 75

T

target_tolerances() (Control method), 94
temperature() (TemperatureSensor method), 38
TemperatureSensor (class in pybricks.nxtdevices), 38
text_height() (Font method), 78

text_width() (Font method), 77

TextMailbox (class in pybricks.messaging), 87
time() (StopWatch method), 54

TouchSensor (class in pybricks.ev3devices), 31
TouchSensor (class in pybricks.nxtdevices), 35
track_target() (Motor method), 30

turn() (DriveBase method), 58

U

UARTDevice (class in pybricks.iodevices), 45
UltrasonicSensor (class in pybricks.ev3devices), 33
UltrasonicSensor (class in pybricks.nxtdevices), 37

Vv

value() (VernierAdapter method), 40
VernierAdapter (class in pybricks.nxtdevices), 39
voltage() (AnalogSensor method), 42

module py-

101

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



Pybricks Modules and Examples Version 2.0.0.post1

voltage() (pybricks.hubs.EV3Brick.battery class method),
27
voltage() (VernierAdapter method), 39

W

wait() (in module pybricks.tools), 54

wait() (Mailbox method), 87

wait_for_connection() (BluetoothMailboxServer
method), 86

wait_new() (Mailbox method), 87

waiting() (UARTDevice method), 45

width (EV3Brick.screen attribute), 27

width (Font attribute), 76

width (Image attribute), 82

write() (I2CDevice method), 43

write() (LUMPDevice method), 42

write() (UARTDevice method), 45

102

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2020 The Pybricks Authors



	EV3 Quick Start
	hubs – Programmable Hubs
	ev3devices – EV3 Devices
	nxtdevices – NXT Devices
	iodevices – Generic I/O Devices
	parameters – Parameters and Constants
	tools – Timing and Data logging
	robotics – Robotics
	media – Sounds and Images
	messaging – Messaging
	Signals and Units
	More about Motors
	Python Module Index
	Index

