
Pybricks Modules and Examples
Version v3.0.0-rc.1

Jul 28, 2021

TABLE OF CONTENTS

1 hubs – Programmable Hubs 2

2 pupdevices – Powered Up Devices 21

3 ev3devices – EV3 Devices 56

4 nxtdevices – NXT Devices 63

5 iodevices – Generic I/O Devices 69

6 parameters – Parameters and Constants 81

7 tools – General purpose tools 86

8 robotics – Robotics 90

9 media – Sounds and Images 93

10 messaging – Messaging 116

11 Signals and Units 122

12 More about Motors 127

Python Module Index 130

Index 131

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

i

Pybricks Modules and Examples Version v3.0.0-rc.1

This documentation has everything you need to install Pybricks and run your first scripts.

Step 1: Install Pybricks

Pybricks scripts are the same across all hubs. The only difference is in how you install Pybricks and how you run
scripts. To get started, click one of the platforms below.

MINDSTORMS EV3 Powered Up (Tech-
nic/City/BOOST)

SPIKE / MINDSTORMS Inven-
tor

Step 2: Start coding!

After you’ve followed the installation steps for your hub, check out the Pybricks modules in the left hand menu to see
what you can do.

Step 3: Share what you made (or ask for help!)

Got questions or issues? Please share your findings on our support page so we can make Pybricks even better. Thank
you!

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

1

https://pybricks.com/install/mindstorms-ev3/installation
https://pybricks.com/install/technic-boost-city/
https://pybricks.com/install/spike-mindstorms/
https://github.com/pybricks/support/issues/

CHAPTER

ONE

HUBS – PROGRAMMABLE HUBS

1.1 Move Hub

class MoveHub
LEGO® BOOST Move Hub.

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters color (Color) – Color of the light.

light.off()
Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

Parameters

• color (Color) – Color of the light.

• durations (list) – List of (time: ms) values of the form [on_1, off_1, on_2,
off_2, ...].

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

2

Pybricks Modules and Examples Version v3.0.0-rc.1

light.animate(colors, interval)
Animates the light with a list of colors. The next color in the list is shown after the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

Parameters

• colors (list) – List of Color values.

• interval (time: ms) – Time between color updates.

Using the battery

battery.voltage()
Gets the voltage of the battery.

Returns Battery voltage.

Return type voltage: mV

battery.current()
Gets the current supplied by the battery.

Returns Battery current.

Return type current: mA

1.1.1 Status light examples

Turning the light on and off

from pybricks.hubs import MoveHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = MoveHub()

Turn the light on and off 5 times.
for i in range(5):

hub.light.on(Color.RED)
wait(1000)

hub.light.off()
wait(500)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

3

Pybricks Modules and Examples Version v3.0.0-rc.1

Making the light blink

from pybricks.hubs import MoveHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = MoveHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

wait(10000)

1.2 City Hub

class CityHub
LEGO® City Hub.

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters color (Color) – Color of the light.

light.off()
Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

4

Pybricks Modules and Examples Version v3.0.0-rc.1

Parameters

• color (Color) – Color of the light.

• durations (list) – List of (time: ms) values of the form [on_1, off_1, on_2,
off_2, ...].

light.animate(colors, interval)
Animates the light with a list of colors. The next color in the list is shown after the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

Parameters

• colors (list) – List of Color values.

• interval (time: ms) – Time between color updates.

Using the battery

battery.voltage()
Gets the voltage of the battery.

Returns Battery voltage.

Return type voltage: mV

battery.current()
Gets the current supplied by the battery.

Returns Battery current.

Return type current: mA

1.2.1 Status light examples

Turning the light on and off

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = CityHub()

Turn the light on and off 5 times.
for i in range(5):

hub.light.on(Color.RED)
wait(1000)

hub.light.off()
wait(500)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

5

Pybricks Modules and Examples Version v3.0.0-rc.1

Changing brightness and using custom colors

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = CityHub()

Show the color at 30% brightness.
hub.light.on(Color.RED * 0.3)

wait(2000)

Use your own custom color.
hub.light.on(Color(h=30, s=100, v=50))

wait(2000)

Go through all the colors.
for hue in range(360):

hub.light.on(Color(hue))
wait(10)

Making the light blink

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = CityHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

wait(10000)

Creating light animations

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait
from math import sin, pi

Initialize the hub.
hub = CityHub()

Make an animation with multiple colors.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

6

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

hub.light.animate([Color.RED, Color.GREEN, Color.NONE], interval=500)

wait(10000)

Make the color RED grow faint and bright using a sine pattern.
hub.light.animate(

[Color.RED * (0.5 * sin(i / 15 * pi) + 0.5) for i in range(30)], 40)

wait(10000)

Cycle through a rainbow of colors.
hub.light.animate([Color(h=i*8) for i in range(45)], interval=40)

wait(10000)

1.3 Technic Hub

class TechnicHub

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters color (Color) – Color of the light.

light.off()
Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

Parameters

• color (Color) – Color of the light.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

7

Pybricks Modules and Examples Version v3.0.0-rc.1

• durations (list) – List of (time: ms) values of the form [on_1, off_1, on_2,
off_2, ...].

light.animate(colors, interval)
Animates the light with a list of colors. The next color in the list is shown after the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

Parameters

• colors (list) – List of Color values.

• interval (time: ms) – Time between color updates.

Using the battery

battery.voltage()
Gets the voltage of the battery.

Returns Battery voltage.

Return type voltage: mV

battery.current()
Gets the current supplied by the battery.

Returns Battery current.

Return type current: mA

1.3.1 Status light examples

Turning the light on and off

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

Turn the light on and off 5 times.
for i in range(5):

hub.light.on(Color.RED)
wait(1000)

hub.light.off()
wait(500)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

8

Pybricks Modules and Examples Version v3.0.0-rc.1

Changing brightness and using custom colors

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

Show the color at 30% brightness.
hub.light.on(Color.RED * 0.3)

wait(2000)

Use your own custom color.
hub.light.on(Color(h=30, s=100, v=50))

wait(2000)

Go through all the colors.
for hue in range(360):

hub.light.on(Color(hue))
wait(10)

Making the light blink

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = TechnicHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

wait(10000)

Creating light animations

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait
from math import sin, pi

Initialize the hub.
hub = TechnicHub()

Make an animation with multiple colors.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

9

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

hub.light.animate([Color.RED, Color.GREEN, Color.NONE], interval=500)

wait(10000)

Make the color RED grow faint and bright using a sine pattern.
hub.light.animate(

[Color.RED * (0.5 * sin(i / 15 * pi) + 0.5) for i in range(30)], 40)

wait(10000)

Cycle through a rainbow of colors.
hub.light.animate([Color(h=i*8) for i in range(45)], interval=40)

wait(10000)

1.4 MINDSTORMS EV3 Brick

class EV3Brick
LEGO® MINDSTORMS® EV3 Brick.

Using the buttons

buttons.pressed()
Checks which buttons are currently pressed.

Returns Tuple of pressed buttons.

Return type Tuple of Button

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

10

Pybricks Modules and Examples Version v3.0.0-rc.1

Using the brick status light

light.on(color)
Turns on the light at the specified color.

Parameters color (Color) – Color of the light.

light.off()
Turns off the light.

Using the speaker

speaker.beep(frequency=500, duration=100)
Play a beep/tone.

Parameters

• frequency (frequency: Hz) – Frequency of the beep. Frequencies below 100 are treated
as 100.

• duration (time: ms) – Duration of the beep. If the duration is less than 0, then the
method returns immediately and the frequency play continues to play indefinitely.

speaker.play_notes(notes, tempo=120)
Plays a sequence of musical notes. For example: ['C4/4', 'C4/4', 'G4/4', 'G4/4'].

Each note is a string with the following format:

• The first character is the name of the note, A to G or R for a rest.

• Note names can also include an accidental # (sharp) or b (flat). B#/Cb and E#/Fb are not allowed.

• The note name is followed by the octave number 2 to 8. For example C4 is middle C. The octave
changes to the next number at the note C, for example, B3 is the note below middle C (C4).

• The octave is followed by / and a number that indicates the size of the note. For example /4 is a
quarter note, /8 is an eighth note and so on.

• This can optionally followed by a . to make a dotted note. Dotted notes are 1-1/2 times as long as
notes without a dot.

• The note can optionally end with a _ which is a tie or a slur. This causes there to be no pause between
this note and the next note.

Parameters

• notes (iter) – A sequence of notes to be played.

• tempo (int) – Beats per minute. A quarter note is one beat.

speaker.play_file(file)
Plays a sound file.

Parameters file (str) – Path to the sound file, including the file extension.

speaker.say(text)
Says a given text string.

You can configure the language and voice of the text using set_speech_options().

Parameters text (str) – What to say.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

11

Pybricks Modules and Examples Version v3.0.0-rc.1

speaker.set_speech_options(language=None, voice=None, speed=None, pitch=None)
Configures speech settings used by the say() method.

Any option that is set to None will not be changed. If an option is set to an invalid value say() will use
the default value instead.

Parameters

• language (str) – Language of the text. For example, you can choose 'en' (English)
or 'de' (German).1

1 You can choose the following languages:
– 'af': Afrikaans

– 'an': Aragonese

– 'bg': Bulgarian

– 'bs': Bosnian

– 'ca': Catalan

– 'cs': Czech

– 'cy': Welsh

– 'da': Danish

– 'de': German

– 'el': Greek

– 'en': English (default)

– 'en-gb': English (United Kingdom)

– 'en-sc': English (Scotland)

– 'en-uk-north': English (United Kingdom, Northern)

– 'en-uk-rp': English (United Kingdom, Received Pronunciation)

– 'en-uk-wmids': English (United Kingdom, West Midlands)

– 'en-us': English (United States)

– 'en-wi': English (West Indies)

– 'eo': Esperanto

– 'es': Spanish

– 'es-la': Spanish (Latin America)

– 'et': Estonian

– 'fa': Persian

– 'fa-pin': Persian

– 'fi': Finnish

– 'fr-be': French (Belgium)

– 'fr-fr': French (France)

– 'ga': Irish

– 'grc': Greek

– 'hi': Hindi

– 'hr': Croatian

– 'hu': Hungarian

– 'hy': Armenian

– 'hy-west': Armenian (Western)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

12

Pybricks Modules and Examples Version v3.0.0-rc.1

• voice (str) – The voice to use. For example, you can choose 'f1' (female voice
variant 1) or 'm3' (male voice variant 3).?

• speed (int) – Number of words per minute.

• pitch (int) – Pitch (0 to 99). Higher numbers make the voice higher pitched and lower
numbers make the voice lower pitched.

– 'id': Indonesian

– 'is': Icelandic

– 'it': Italian

– 'jbo': Lojban

– 'ka': Georgian

– 'kn': Kannada

– 'ku': Kurdish

– 'la': Latin

– 'lfn': Lingua Franca Nova

– 'lt': Lithuanian

– 'lv': Latvian

– 'mk': Macedonian

– 'ml': Malayalam

– 'ms': Malay

– 'ne': Nepali

– 'nl': Dutch

– 'no': Norwegian

– 'pa': Punjabi

– 'pl': Polish

– 'pt-br': Portuguese (Brazil)

– 'pt-pt': Portuguese (Portugal)

– 'ro': Romanian

– 'ru': Russian

– 'sk': Slovak

– 'sq': Albanian

– 'sr': Serbian

– 'sv': Swedish

– 'sw': Swahili

– 'ta': Tamil

– 'tr': Turkish

– 'vi': Vietnamese

– 'vi-hue': Vietnamese (Hue)

– 'vi-sgn': Vietnamese (Saigon)

– 'zh': Mandarin Chinese

– 'zh-yue': Cantonese Chinese
You can choose the following voices:

– 'f1': female variant 1

– 'f2': female variant 2

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

13

Pybricks Modules and Examples Version v3.0.0-rc.1

speaker.set_volume(volume, which='_all_')
Sets the speaker volume.

Parameters

• volume (percentage: %) – Volume of the speaker.

• which (str) – Which volume to set. 'Beep' sets the volume for beep() and
play_notes(). 'PCM' sets the volume for play_file() and say(). '_all_'
sets both at the same time.

Using the screen

screen.clear()
Clears the screen. All pixels on the screen will be set to Color.WHITE.

screen.draw_text(x, y, text, text_color=Color(h=0, s=0, v=10), background_color=None)
Draws text on the screen.

The most recent font set using set_font() will be used or Font.DEFAULT if no font has been set yet.

Parameters

• x (int) – The x-axis value where the left side of the text will start.

• y (int) – The y-axis value where the top of the text will start.

• text (str) – The text to draw.

• text_color (Color) – The color used for drawing the text.

• background_color (Color) – The color used to fill the rectangle behind the text or
None for transparent background.

screen.print(*args, sep=' ', end='\n')
Prints a line of text on the screen.

This method works like the builtin print() function, but it writes on the screen instead.

You can set the font using set_font(). If no font has been set, Font.DEFAULT will be used. The
text is always printed used black text with a white background.

– 'f3': female variant 3

– 'f4': female variant 4

– 'f5': female variant 5

– 'm1': male variant 1

– 'm2': male variant 2

– 'm3': male variant 3

– 'm4': male variant 4

– 'm5': male variant 5

– 'm6': male variant 6

– 'm7': male variant 7

– 'croak': croak

– 'whisper': whisper

– 'whisperf': female whisper

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

14

Pybricks Modules and Examples Version v3.0.0-rc.1

Unlike the builtin print(), the text does not wrap if it is too wide to fit on the screen. It just gets cut
off. But if the text would go off of the bottom of the screen, the entire image is scrolled up and the text is
printed in the new blank area at the bottom of the screen.

Parameters

• * (object) – Zero or more objects to print.

• sep (str) – Separator that will be placed between each object that is printed.

• end (str) – End of line that will be printed after the last object.

screen.set_font(font)
Sets the font used for writing on the screen.

The font is used for both draw_text() and print().

Parameters font (Font) – The font to use.

screen.load_image(source)
Clears this image, then draws the source image centered in the screen.

Parameters source (Image or str) – The source Image. If the argument is a string, then
the source image is loaded from file.

screen.draw_image(x, y, source, transparent=None)
Draws the source image on the screen.

Parameters

• x (int) – The x-axis value where the left side of the image will start.

• y (int) – The y-axis value where the top of the image will start.

• source (Image or str) – The source Image. If the argument is a string, then the
source image is loaded from file.

• transparent (Color) – The color of image to treat as transparent or None for no
transparency.

screen.draw_pixel(x, y, color=Color(h=0, s=0, v=10))
Draws a single pixel on the screen.

Parameters

• x (int) – The x coordinate of the pixel.

• y (int) – The y coordinate of the pixel.

• color (Color) – The color of the pixel.

screen.draw_line(x1, y1, x2, y2, width=1, color=Color(h=0, s=0, v=10))
Draws a line on the screen.

Parameters

• x1 (int) – The x coordinate of the starting point of the line.

• y1 (int) – The y coordinate of the starting point of the line.

• x2 (int) – The x coordinate of the ending point of the line.

• y2 (int) – The y coordinate of the ending point of the line.

• width (int) – The width of the line in pixels.

• color (Color) – The color of the line.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

15

Pybricks Modules and Examples Version v3.0.0-rc.1

screen.draw_box(x1, y1, x2, y2, r=0, fill=False, color=Color(h=0, s=0, v=10))
Draws a box on the screen.

Parameters

• x1 (int) – The x coordinate of the left side of the box.

• y1 (int) – The y coordinate of the top of the box.

• x2 (int) – The x coordinate of the right side of the box.

• y2 (int) – The y coordinate of the bottom of the box.

• r (int) – The radius of the corners of the box.

• fill (bool) – If True, the box will be filled with color, otherwise only the outline of
the box will be drawn.

• color (Color) – The color of the box.

screen.draw_circle(x, y, r, fill=False, color=Color(h=0, s=0, v=10))
Draws a circle on the screen.

Parameters

• x (int) – The x coordinate of the center of the circle.

• y (int) – The y coordinate of the center of the circle.

• r (int) – The radius of the circle.

• fill (bool) – If True, the circle will be filled with color, otherwise only the circum-
ference will be drawn.

• color (Color) – The color of the circle.

screen.width
Gets the width of the screen in pixels.

screen.height
Gets the height of the screen in pixels.

screen.save(filename)
Saves the screen as a .png file.

Parameters filename (str) – The path to the file to be saved.

Raises

• TypeError – filename is not a string.

• OSError – There was a problem saving the file.

Using the battery

battery.voltage()
Gets the voltage of the battery.

Returns Battery voltage.

Return type voltage: mV

battery.current()
Gets the current supplied by the battery.

Returns Battery current.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

16

Pybricks Modules and Examples Version v3.0.0-rc.1

Return type current: mA

1.4.1 Status light examples

Turn the light on and change the color

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait
from pybricks.parameters import Color

Initialize the EV3
ev3 = EV3Brick()

Turn on a red light
ev3.light.on(Color.RED)

Wait
wait(1000)

Turn the light off
ev3.light.off()

1.4.2 Screen examples

Show an image on the screen

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait
from pybricks.media.ev3dev import Image, ImageFile

It takes some time to load images from the SD card, so it is best to load
them once at the beginning of a program like this:
ev3_img = Image(ImageFile.EV3_ICON)

Initialize the EV3
ev3 = EV3Brick()

Show an image
ev3.screen.load_image(ev3_img)

Wait some time to look at the image
wait(5000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

17

Pybricks Modules and Examples Version v3.0.0-rc.1

Drawing shapes on the screen

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait

Initialize the EV3
ev3 = EV3Brick()

Draw a rectangle
ev3.screen.draw_box(10, 10, 40, 40)

Draw a solid rectangle
ev3.screen.draw_box(20, 20, 30, 30, fill=True)

Draw a rectangle with rounded corners
ev3.screen.draw_box(50, 10, 80, 40, 5)

Draw a circle
ev3.screen.draw_circle(25, 75, 20)

Draw a triangle using lines
x1, y1 = 65, 55
x2, y2 = 50, 95
x3, y3 = 80, 95
ev3.screen.draw_line(x1, y1, x2, y2)
ev3.screen.draw_line(x2, y2, x3, y3)
ev3.screen.draw_line(x3, y3, x1, y1)

Wait some time to look at the shapes
wait(5000)

Using different fonts

#!/usr/bin/env pybricks-micropython

from pybricks.hubs import EV3Brick
from pybricks.tools import wait
from pybricks.media.ev3dev import Font

It takes some time for fonts to load from file, so it is best to only
load them once at the beginning of the program like this:
tiny_font = Font(size=6)
big_font = Font(size=24, bold=True)
chinese_font = Font(size=24, lang='zh-cn')

Initialize the EV3
ev3 = EV3Brick()

Say hello
ev3.screen.print('Hello!')

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

18

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

Say tiny hello
ev3.screen.set_font(tiny_font)
ev3.screen.print('hello')

Say big hello
ev3.screen.set_font(big_font)
ev3.screen.print('HELLO')

Say Chinese hello
ev3.screen.set_font(chinese_font)
ev3.screen.print('你好')

Wait some time to look at the screen
wait(5000)

Available languages and voices for speech

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

19

movehub.html
cityhub.html
technichub.html

Pybricks Modules and Examples Version v3.0.0-rc.1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

20

ev3brick.html

CHAPTER

TWO

PUPDEVICES – POWERED UP DEVICES

LEGO® Powered Up motor, sensors, and lights.

2.1 Motors without Rotation Sensors

Figure 2.1: Powered Up motors without rotation sensors. The arrows indicate the default positive direction.

class DCMotor(port, positive_direction=Direction.CLOCKWISE)
Generic class to control simple motors without rotation sensors, such as train motors.

Parameters

• port (Port) – Port to which the motor is connected.

• positive_direction (Direction) – Which direction the motor should turn when
you give a positive duty cycle value.

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

Parameters duty (percentage: %) – The duty cycle (-100.0 to 100).

stop()
Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

brake()
Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

21

Pybricks Modules and Examples Version v3.0.0-rc.1

2.1.1 Examples

Making a train drive forever

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the motor.
train_motor = DCMotor(Port.A)

Choose the "power" level for your train. Negative means reverse.
train_motor.dc(50)

Keep doing nothing. The train just keeps going.
while True:

wait(1000)

Making the motor move back and forth

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor without rotation sensors on port A.
example_motor = DCMotor(Port.A)

Make the motor go clockwise (forward) at 70% duty cycle ("70% power").
example_motor.dc(70)

Wait for three seconds.
wait(3000)

Make the motor go counterclockwise (backward) at 70% duty cycle.
example_motor.dc(-70)

Wait for three seconds.
wait(3000)

Changing the positive direction

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port, Direction
from pybricks.tools import wait

Initialize a motor without rotation sensors on port A,
with the positive direction as counterclockwise.
example_motor = DCMotor(Port.A, Direction.COUNTERCLOCKWISE)

When we choose a positive duty cycle, the motor now goes counterclockwise.
example_motor.dc(70)

This is useful when your (train) motor is mounted in reverse or upside down.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

22

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

By changing the positive direction, your script will be easier to read,
because a positive value now makes your train/robot go forward.

Wait for three seconds.
wait(3000)

Starting and stopping

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor without rotation sensors on port A.
example_motor = DCMotor(Port.A)

Start and stop 10 times.
for count in range(10):

print("Counter:", count)

example_motor.dc(70)
wait(1000)

example_motor.stop()
wait(1000)

2.2 Motors with Rotation Sensors

class Motor(port, positive_direction=Direction.CLOCKWISE, gears=None)
Generic class to control motors with built-in rotation sensors.

Parameters

• port (Port) – Port to which the motor is connected.

• positive_direction (Direction) – Which direction the motor should turn when
you give a positive speed value or angle.

• gears (list) – List of gears linked to the motor.

For example: [12, 36] represents a gear train with a 12-tooth and a 36-tooth gear. Use a
list of lists for multiple gear trains, such as [[12, 36], [20, 16, 40]].

When you specify a gear train, all motor commands and settings are automatically adjusted
to account for the resulting gear ratio. The motor direction remains unchanged by this.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

23

Pybricks Modules and Examples Version v3.0.0-rc.1

Figure 2.2: Powered Up motors with rotation sensors. The arrows indicate the default positive direction. See the hubs
module for default directions of built-in motors.

Measuring

speed()
Gets the speed of the motor.

Returns Motor speed.

Return type rotational speed: deg/s

angle()
Gets the rotation angle of the motor.

Returns Motor angle.

Return type angle: deg

reset_angle(angle=None)
Sets the accumulated rotation angle of the motor to a desired value.

If you don’t specify an angle, the absolute angle will be used if your motor supports it.

Parameters angle (angle: deg) – Value to which the angle should be reset.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

24

Pybricks Modules and Examples Version v3.0.0-rc.1

Stopping

stop()
Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

brake()
Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

hold()
Stops the motor and actively holds it at its current angle.

Action

run(speed)
Runs the motor at a constant speed.

The motor accelerates to the given speed and keeps running at this speed until you give a new command.

Parameters speed (rotational speed: deg/s) – Speed of the motor.

run_time(speed, time, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed for a given amount of time.

The motor accelerates to the given speed, keeps running at this speed, and then decelerates. The total
maneuver lasts for exactly the given amount of time.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• time (time: ms) – Duration of the maneuver.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

run_angle(speed, rotation_angle, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed by a given angle.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• rotation_angle (angle: deg) – Angle by which the motor should rotate.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

run_target(speed, target_angle, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed towards a given target angle.

The direction of rotation is automatically selected based on the target angle. It does not matter if speed
is positive or negative.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

25

Pybricks Modules and Examples Version v3.0.0-rc.1

• target_angle (angle: deg) – Angle that the motor should rotate to.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the motor to reach the target before continuing with the rest of
the program.

run_until_stalled(speed, then=Stop.COAST, duty_limit=None)
Runs the motor at a constant speed until it stalls.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• then (Stop) – What to do after coming to a standstill.

• duty_limit (percentage: %) – Duty cycle limit during this command. This is useful to
avoid applying the full motor torque to a geared or lever mechanism.

Returns Angle at which the motor becomes stalled.

Return type angle: deg

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

This method lets you use a motor just like a simple DC motor.

Parameters duty (percentage: %) – The duty cycle (-100.0 to 100).

Advanced motion control

track_target(target_angle)
Tracks a target angle. This is similar to run_target(), but the usual smooth acceleration is skipped: it
will move to the target angle as fast as possible. This method is useful if you want to continuously change
the target angle.

Parameters target_angle (angle: deg) – Target angle that the motor should rotate to.

control
The motors use PID control to accurately track the speed and angle targets that you specify. You can
change its behavior through the control attribute of the motor. See The Control Class for an overview
of available methods.

2.2.1 Initialization Examples

Making the motor move back and forth

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Make the motor run clockwise at 500 degrees per second.
example_motor.run(500)

Wait for three seconds.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

26

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

wait(3000)

Make the motor run counterclockwise at 500 degrees per second.
example_motor.run(-500)

Wait for three seconds.
wait(3000)

Initializing multiple motors

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize motors on port A and B.
track_motor = Motor(Port.A)
gripper_motor = Motor(Port.B)

Make both motors run at 500 degrees per second.
track_motor.run(500)
gripper_motor.run(500)

Wait for three seconds.
wait(3000)

Setting the positive direction as counterclockwise

from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Direction
from pybricks.tools import wait

Initialize a motor on port A with the positive direction as counterclockwise.
example_motor = Motor(Port.A, Direction.COUNTERCLOCKWISE)

When we choose a positive speed value, the motor now goes counterclockwise.
example_motor.run(500)

This is useful when your motor is mounted in reverse or upside down.
By changing the positive direction, your script will be easier to read,
because a positive value now makes your robot/mechanism go forward.

Wait for three seconds.
wait(3000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

27

Pybricks Modules and Examples Version v3.0.0-rc.1

Using gears

from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Direction
from pybricks.tools import wait

Initialize a motor on port A with the positive direction as counterclockwise.
Also specify one gear train with a 12-tooth and a 36-tooth gear. The 12-tooth
gear is attached to the motor axle. The 36-tooth gear is at the output axle.
geared_motor = Motor(Port.A, Direction.COUNTERCLOCKWISE, [12, 36])

Make the output axle run at 100 degrees per second. The motor speed
is automatically increased to compensate for the gears.
geared_motor.run(100)

Wait for three seconds.
wait(3000)

2.2.2 Measurement Examples

Measuring the angle and speed

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Start moving at 300 degrees per second.
example_motor.run(300)

Display the angle and speed 50 times.
for i in range(100):

Read the angle (degrees) and speed (degrees per second).
angle = example_motor.angle()
speed = example_motor.speed()

Print the values.
print(angle, speed)

Wait some time so we can read what is displayed.
wait(200)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

28

Pybricks Modules and Examples Version v3.0.0-rc.1

Resetting the measured angle

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

Initialize a motor on port A.
example_motor = Motor(Port.A)

Reset the angle to 0.
example_motor.reset_angle(0)

Reset the angle to 1234.
example_motor.reset_angle(1234)

Reset the angle to the absolute angle.
This is only supported on motors that have
an absolute encoder. For other motors, this
will raise an error.
example_motor.reset_angle()

2.2.3 Movement Examples

Basic usage of all run methods

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Run at 500 deg/s and then stop by coasting.
print("Demo of run")
example_motor.run(500)
wait(1500)
example_motor.stop()
wait(1500)

Run at 70% duty cycle ("power") and then stop by coasting.
print("Demo of dc")
example_motor.dc(50)
wait(1500)
example_motor.stop()
wait(1500)

Run at 500 deg/s for two seconds.
print("Demo of run_time")
example_motor.run_time(500, 2000)
wait(1500)

Run at 500 deg/s for 90 degrees.
print("Demo of run_angle")
example_motor.run_angle(500, 90)
wait(1500)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

29

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

Run at 500 deg/s back to the 0 angle
print("Demo of run_target to 0")
example_motor.run_target(500, 0)
wait(1500)

Run at 500 deg/s back to the -90 angle
print("Demo of run_target to -90")
example_motor.run_target(500, -90)
wait(1500)

Run at 500 deg/s until the motor stalls
print("Demo of run_until_stalled")
example_motor.run_until_stalled(500)
print("Done")
wait(1500)

Stopping ongoing movements in different ways

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Run at 500 deg/s and then stop by coasting.
example_motor.run(500)
wait(1500)
example_motor.stop()
wait(1500)

Run at 500 deg/s and then stop by braking.
example_motor.run(500)
wait(1500)
example_motor.brake()
wait(1500)

Run at 500 deg/s and then stop by holding.
example_motor.run(500)
wait(1500)
example_motor.hold()
wait(1500)

Run at 500 deg/s and then stop by running at 0 speed.
example_motor.run(500)
wait(1500)
example_motor.run(0)
wait(1500)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

30

Pybricks Modules and Examples Version v3.0.0-rc.1

Using the then argument to change how a run command stops

from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Stop
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

By default, the motor holds the position. It keeps
correcting the angle if you move it.
example_motor.run_angle(500, 360)
wait(1000)

This does exactly the same as above.
example_motor.run_angle(500, 360, then=Stop.HOLD)
wait(1000)

You can also brake. This applies some resistance
but the motor does not move back if you move it.
example_motor.run_angle(500, 360, then=Stop.BRAKE)
wait(1000)

This makes the motor coast freely after it stops.
example_motor.run_angle(500, 360, then=Stop.COAST)
wait(1000)

2.2.4 Stall Examples

Running a motor until a mechanical endpoint

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

Initialize a motor on port A.
example_motor = Motor(Port.A)

We'll use a speed of 200 deg/s in all our commands.
speed = 200

Run the motor in reverse until it hits a mechanical stop.
The duty_limit=30 setting means that it will apply only 30%
of the maximum torque against the mechanical stop. This way,
you don't push against it with too much force.
example_motor.run_until_stalled(-speed, duty_limit=30)

Reset the angle to 0. Now whenever the angle is 0, you know
that it has reached the mechanical endpoint.
example_motor.reset_angle(0)

Now make the motor go back and forth in a loop.
This will now work the same regardless of the
initial motor angle, because we always start
from the mechanical endpoint.
for count in range(10):

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

31

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

example_motor.run_target(speed, 180)
example_motor.run_target(speed, 90)

Centering a steering mechanism

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

Initialize a motor on port A.
example_motor = Motor(Port.A)

We'll use a speed of 200 deg/s in all our commands.
speed = 200

Run the motor in reverse until it hits a mechanical stop.
The duty_limit=30 setting means that it will apply only 30%
of the maximum torque against the mechanical stop. This way,
you don't push against it with too much force.
example_motor.run_until_stalled(-speed, duty_limit=30)

Reset the angle to 0. Now whenever the angle is 0, you know
that it has reached the mechanical endpoint.
example_motor.reset_angle(0)

Now make the motor go back and forth in a loop.
This will now work the same regardless of the
initial motor angle, because we always start
from the mechanical endpoint.
for count in range(10):

example_motor.run_target(speed, 180)
example_motor.run_target(speed, 90)

2.2.5 Parallel Movement Examples

Using the wait argument to run motors in parallel

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

Initialize motors on port A and B.
track_motor = Motor(Port.A)
gripper_motor = Motor(Port.B)

Make the track motor start moving,
but don't wait for it to finish.
track_motor.run_angle(500, 360, wait=False)

Now make the gripper motor rotate. This
means they move at the same time.
gripper_motor.run_angle(200, 720)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

32

Pybricks Modules and Examples Version v3.0.0-rc.1

Waiting for two parallel actions to complete

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize motors on port A and B.
track_motor = Motor(Port.A)
gripper_motor = Motor(Port.B)

Make both motors perform an action with wait=False
track_motor.run_angle(500, 360, wait=False)
gripper_motor.run_angle(200, 720, wait=False)

While one or both of the motors are not done yet,
do something else. In this example, just wait.
while not track_motor.control.done() or not gripper_motor.control.done():

wait(10)

print("Both motors are done!")

2.3 Tilt Sensor

class TiltSensor(port)
LEGO® Powered Up Tilt Sensor.

Parameters port (Port) – Port to which the sensor is connected.

tilt()
Measures the tilt relative to the horizontal plane.

Returns Tuple of pitch and roll angles.

Return type (angle: deg, angle: deg)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

33

Pybricks Modules and Examples Version v3.0.0-rc.1

2.3.1 Examples

Measuring pitch and roll

from pybricks.pupdevices import TiltSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
accel = TiltSensor(Port.A)

while True:
Read the tilt angles relative to the horizontal plane.
pitch, roll = accel.tilt()

Print the values
print("Pitch:", pitch, "Roll:", roll)

Wait some time so we can read what is printed.
wait(100)

2.4 Infrared Sensor

class InfraredSensor(port)
LEGO® Powered Up Infrared Sensor.

Parameters port (Port) – Port to which the sensor is connected.

distance()
Measures the relative distance between the sensor and an object using infrared light.

Returns Relative distance ranging from 0 (closest) to 100 (farthest).

Return type relative distance: %

reflection()
Measures the reflection of a surface using an infrared light.

Returns Reflection, ranging from 0.0 (no reflection) to 100.0 (high reflection).

Return type percentage: %

count()
Counts the number of objects that have passed by the sensor.

Returns Number of objects counted.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

34

Pybricks Modules and Examples Version v3.0.0-rc.1

Return type int

2.4.1 Examples

Measuring distance, object count, and reflection

from pybricks.pupdevices import InfraredSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
ir = InfraredSensor(Port.A)

while True:
Read all the information we can get from this sensor.
dist = ir.distance()
count = ir.count()
ref = ir.reflection()

Print the values
print("Distance:", dist, "Count:", count, "Reflection:", ref)

Move the sensor around and move your hands in front
of it to see what happens to the values.

Wait some time so we can read what is printed.
wait(200)

2.5 Color and Distance Sensor

class ColorDistanceSensor(port)
LEGO® Powered Up Color and Distance Sensor.

Parameters port (Port) – Port to which the sensor is connected.

color()
Scans the color of a surface.

You choose which colors are detected using the detectable_colors() method. By default, it detects
Color.RED, Color.YELLOW, Color.GREEN, Color.BLUE, Color.WHITE, or Color.NONE.

Returns Detected color.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

35

Pybricks Modules and Examples Version v3.0.0-rc.1

Return type Color

reflection()
Measures the reflection of a surface.

Returns Reflection, ranging from 0.0 (no reflection) to 100.0 (high reflection).

Return type percentage: %

ambient()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).

Return type percentage: %

distance()
Measures the relative distance between the sensor and an object using infrared light.

Returns Relative distance ranging from 0 (closest) to 100 (farthest).

Return type relative distance: %

hsv()
Scans the color of a surface.

This method is similar to color(), but it gives the full range of hue, saturation and brightness values,
instead of rounding it to the nearest detectable color.

Returns Measured color. The color is described by a hue (0–359), a saturation (0–100), and a
brightness value (0–100).

Return type Color

detectable_colors(colors)
Configures which colors the color() method should detect.

Specify only colors that you wish to detect in your application. This way, the full-color measurements are
rounded to the nearest desired color, and other colors are ignored. This improves reliability.

If you give no arguments, the currently chosen colors will be returned as a tuple.

Parameters colors (list) – Tuple of Color objects: the colors that you want to detect.
You can pick standard colors such as Color.MAGENTA, or provide your own colors like
Color(h=348, s=96, v=40) for even better results. You measure your own colors
with the hsv() method.

Built-in light

This sensor has a built-in light. You can make it red, green, blue, or turn it off. If you use the sensor to measure
something afterwards, the light automatically turns back on at the default color for that sensing method.

light.on(color)
Turns on the light at the specified color.

Parameters color (Color) – Color of the light.

light.off()
Turns off the light.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

36

Pybricks Modules and Examples Version v3.0.0-rc.1

2.5.1 Examples

Measuring color

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

while True:
Read the color.
color = sensor.color()

Print the measured color.
print(color)

Move the sensor around and see how
well you can detect colors.

Wait so we can read the value.
wait(100)

Waiting for a color

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

This is a function that waits for a desired color.
def wait_for_color(desired_color):

While the color is not the desired color, we keep waiting.
while sensor.color() != desired_color:

wait(20)

Now we use the function we just created above.
while True:

Here you can make your train/vehicle go forward.

print("Waiting for red ...")
wait_for_color(Color.RED)

Here you can make your train/vehicle go backward.

print("Waiting for blue ...")
wait_for_color(Color.BLUE)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

37

Pybricks Modules and Examples Version v3.0.0-rc.1

Measuring distance

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

Repeat forever.
while True:

If the sensor sees an object nearby.
if sensor.distance() <= 40:

Then blink the light red/blue 5 times.
for i in range(5):

sensor.light.on(Color.RED)
wait(30)
sensor.light.on(Color.BLUE)
wait(30)

else:
If the sensor sees nothing
nearby, just wait briefly.
wait(10)

Blinking the built-in light

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

Repeat forever.
while True:

If the sensor sees an object nearby.
if sensor.distance() <= 40:

Then blink the light red/blue 5 times.
for i in range(5):

sensor.light.on(Color.RED)
wait(30)
sensor.light.on(Color.BLUE)
wait(30)

else:
If the sensor sees nothing
nearby, just wait briefly.
wait(10)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

38

Pybricks Modules and Examples Version v3.0.0-rc.1

Reading hue, saturation, value

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

while True:
The standard color() method always "rounds" the
measurement to the nearest "whole" color.
That's useful for most applications.

But you can get the original hue, saturation,
and value without "rounding", as follows:
color = sensor.hsv()

Print the results.
print(color)

Wait so we can read the value.
wait(500)

Changing the detectable colors

By default, the sensor is configured to detect red, yellow, green, blue, white, or no color, which suits many applications.

For better results in your application, you can measure your desired colors in advance, and tell the sensor to look only
for those colors. Be sure to measure them at the same distance and light conditions as in your final application. Then
you’ll get very accurate results even for colors that are otherwise hard to detect.

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

First, decide which objects you want to detect, and measure their HSV values.
You can do that with the hsv() method as shown in the previous example.
#
Use your measurements to override the default colors, or add new colors:
Color.GREEN = Color(h=132, s=94, v=26)
Color.MAGENTA = Color(h=348, s=96, v=40)
Color.BROWN = Color(h=17, s=78, v=15)
Color.RED = Color(h=359, s=97, v=39)

Put your colors in a list or tuple.
my_colors = (Color.GREEN, Color.MAGENTA, Color.BROWN, Color.RED, Color.NONE)

Save your colors.
sensor.detectable_colors(my_colors)

color() works as usual, but now it returns one of your specified colors.
while True:

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

39

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

color = sensor.color()

Print the color.
print(color)

Check which one it is.
if color == Color.MAGENTA:

print("It works!")

Wait so we can read it.
wait(100)

2.6 Power Functions

The ColorDistanceSensor can send infrared signals to control Power Functions infrared receivers. You can use
this technique to control medium, large, extra large, and train motors. The infrared range is limited to about 30 cm,
depending on the angle and ambient conditions.

Figure 2.3: Powered Up ColorDistanceSensor (left), Power Functions infrared receiver (middle), and a Power
Functions motor (right). Here, the receiver uses channel 1 with a motor on the red port.

class PFMotor(sensor, channel, color, positive_direction=Direction.CLOCKWISE)
Control Power Functions motors with the infrared functionality of the ColorDistanceSensor.

Parameters

• sensor (ColorDistanceSensor) – Sensor object.

• channel (int) – Channel number of the receiver: 1, 2, 3, or 4.

• color (Color) – Color marker on the receiver: Color.BLUE or Color.RED

• positive_direction (Direction) – Which direction the motor should turn when
you give a positive duty cycle value.

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

Parameters duty (percentage: %) – The duty cycle (-100.0 to 100).

stop()
Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

40

Pybricks Modules and Examples Version v3.0.0-rc.1

brake()
Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

2.6.1 Examples

Control a Power Functions motor

from pybricks.pupdevices import ColorDistanceSensor, PFMotor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.B)

Initialize a motor on channel 1, on the red output.
motor = PFMotor(sensor, 1, Color.RED)

Rotate and then stop.
motor.dc(100)
wait(1000)
motor.stop()
wait(1000)

Rotate the other way at half speed, and then stop.
motor.dc(-50)
wait(1000)
motor.stop()

Controlling multiple Power Functions motors

from pybricks.pupdevices import ColorDistanceSensor, PFMotor
from pybricks.parameters import Port, Color, Direction
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.B)

You can use multiple motors on different channels.
arm = PFMotor(sensor, 1, Color.BLUE)
wheel = PFMotor(sensor, 4, Color.RED, Direction.COUNTERCLOCKWISE)

Accelerate both motors. Only these values are available.
Other values will be rounded down to the nearest match.
for duty in [15, 30, 45, 60, 75, 90, 100]:

arm.dc(duty)
wheel.dc(duty)
wait(1000)

To make the signal more reliable, there is a short
pause between commands. So, they change speed and
stop at a slightly different time.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

41

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

Brake both motors.
arm.brake()
wheel.brake()

2.7 Color Sensor

class ColorSensor(port)
LEGO® SPIKE Color Sensor.

Parameters port (Port) – Port to which the sensor is connected.

color(surface=True)
Scans the color of a surface or an external light source.

You choose which colors are detected using the detectable_colors() method. By default, it detects
Color.RED, Color.YELLOW, Color.GREEN, Color.BLUE, Color.WHITE, or Color.NONE.

Parameters surface (bool) – Choose true to scan the color of objects and surfaces.
Choose false to scan the color of screens and other external light sources.

Returns Detected color.

Return type Color

reflection()
Measures the reflection of a surface.

Returns Reflection, ranging from 0.0 (no reflection) to 100.0 (high reflection).

Return type percentage: %

ambient()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).

Return type percentage: %

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

42

Pybricks Modules and Examples Version v3.0.0-rc.1

Advanced color sensing

hsv(surface=True)
Scans the color of a surface or an external light source.

This method is similar to color(), but it gives the full range of hue, saturation and brightness values,
instead of rounding it to the nearest detectable color.

Parameters surface (bool) – Choose true to scan the color of objects and surfaces.
Choose false to scan the color of screens and other external light sources.

Returns Measured color. The color is described by a hue (0–359), a saturation (0–100), and a
brightness value (0–100).

Return type Color

detectable_colors(colors)
Configures which colors the color() method should detect.

Specify only colors that you wish to detect in your application. This way, the full-color measurements are
rounded to the nearest desired color, and other colors are ignored. This improves reliability.

If you give no arguments, the currently chosen colors will be returned as a tuple.

Parameters colors (list) – Tuple of Color objects: the colors that you want to detect.
You can pick standard colors such as Color.MAGENTA, or provide your own colors like
Color(h=348, s=96, v=40) for even better results. You measure your own colors
with the hsv() method.

Built-in lights

This sensor has 3 built-in lights. You can adjust the brightness of each light. If you use the sensor to measure
something, the lights will be turned on or off as needed for the measurement.

lights.on(brightness)
Turns on the lights at the specified brightness.

Parameters brightness (tuple of brightness: %) – Brightness of each light, in the order
shown above. If you give one brightness value instead of a tuple, all lights get the same
brightness.

lights.off()
Turns off all the lights.

2.7.1 Examples

Measuring color and reflection

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

while True:
Read the color and reflection

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

43

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

color = sensor.color()
reflection = sensor.reflection()

Print the measured color and reflection.
print(color, reflection)

Move the sensor around and see how
well you can detect colors.

Wait so we can read the value.
wait(100)

Waiting for a color

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

This is a function that waits for a desired color.
def wait_for_color(desired_color):

While the color is not the desired color, we keep waiting.
while sensor.color() != desired_color:

wait(20)

Now we use the function we just created above.
while True:

Here you can make your train/vehicle go forward.

print("Waiting for red ...")
wait_for_color(Color.RED)

Here you can make your train/vehicle go backward.

print("Waiting for blue ...")
wait_for_color(Color.BLUE)

Reading reflected hue, saturation, and value

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

while True:
The standard color() method always "rounds" the

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

44

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

measurement to the nearest "whole" color.
That's useful for most applications.

But you can get the original hue, saturation,
and value without "rounding", as follows:
color = sensor.hsv()

Print the results.
print(color)

Wait so we can read the value.
wait(500)

Changing the detectable colors

By default, the sensor is configured to detect red, yellow, green, blue, white, or no color, which suits many applications.

For better results in your application, you can measure your desired colors in advance, and tell the sensor to look only
for those colors. Be sure to measure them at the same distance and light conditions as in your final application. Then
you’ll get very accurate results even for colors that are otherwise hard to detect.

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

First, decide which objects you want to detect, and measure their HSV values.
You can do that with the hsv() method as shown in the previous example.
#
Use your measurements to override the default colors, or add new colors:
Color.GREEN = Color(h=132, s=94, v=26)
Color.MAGENTA = Color(h=348, s=96, v=40)
Color.BROWN = Color(h=17, s=78, v=15)
Color.RED = Color(h=359, s=97, v=39)

Put your colors in a list or tuple.
my_colors = (Color.GREEN, Color.MAGENTA, Color.BROWN, Color.RED, Color.NONE)

Save your colors.
sensor.detectable_colors(my_colors)

color() works as usual, but now it returns one of your specified colors.
while True:

color = sensor.color()

Print the color.
print(color)

Check which one it is.
if color == Color.MAGENTA:

print("It works!")

Wait so we can read it.
wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

45

Pybricks Modules and Examples Version v3.0.0-rc.1

Reading ambient hue, saturation, value, and color

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

Repeat forever.
while True:

Get the ambient color values. Instead of scanning the color of a surface,
this lets you scan the color of light sources like lamps or screens.
hsv = sensor.hsv(surface=False)
color = sensor.color(surface=False)

Get the ambient light intensity.
ambient = sensor.ambient()

Print the measurements.
print(hsv, color, ambient)

Point the sensor at a computer screen or colored light. Watch the color.
Also, cover the sensor with your hands and watch the ambient value.

Wait so we can read the printed line
wait(100)

Blinking the built-in lights

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

Repeat forever.
while True:

Turn on one light at a time, at half the brightness.
Do this for all 3 lights and repeat that 5 times.
for i in range(5):

sensor.lights.on([50, 0, 0])
wait(100)
sensor.lights.on([0, 50, 0])
wait(100)
sensor.lights.on([0, 0, 50])
wait(100)

Turn all lights on at maximum brightness.
sensor.lights.on(100)
wait(500)

Turn all lights off.
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

46

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

sensor.lights.off()
wait(500)

2.8 Ultrasonic Sensor

class UltrasonicSensor(port)
LEGO® SPIKE Color Sensor.

Parameters port (Port) – Port to which the sensor is connected.

distance()
Measures the distance between the sensor and an object using ultrasonic sound waves.

Returns Measured distance. If no valid distance was measured, it returns 2000 mm.

Return type distance: mm

presence()
Checks for the presence of other ultrasonic sensors by detecting ultrasonic sounds.

Returns True if ultrasonic sounds are detected, False if not.

Return type bool

Built-in lights

This sensor has 4 built-in lights. You can adjust the brightness of each light.

lights.on(brightness)
Turns on the lights at the specified brightness.

Parameters brightness (tuple of brightness: %) – Brightness of each light, in the order
shown above. If you give one brightness value instead of a tuple, all lights get the same
brightness.

lights.off()
Turns off all the lights.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

47

Pybricks Modules and Examples Version v3.0.0-rc.1

2.8.1 Examples

Measuring distance and switching on the lights

from pybricks.pupdevices import UltrasonicSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
eyes = UltrasonicSensor(Port.A)

while True:
Print the measured distance.
print(eyes.distance())

If an object is detected closer than 500mm:
if eyes.distance() < 500:

Turn the lights on.
eyes.lights.on(100)

else:
Turn the lights off.
eyes.lights.off()

Wait some time so we can read what is printed.
wait(100)

Gradually change the brightness of the lights

from pybricks.pupdevices import UltrasonicSensor
from pybricks.parameters import Port
from pybricks.tools import wait, StopWatch

The math module is part of standard MicroPython:
https://docs.micropython.org/en/latest/library/math.html
from math import pi, sin

Initialize the sensor.
eyes = UltrasonicSensor(Port.A)

Initialize a timer.
watch = StopWatch()

We want one full light cycle to last three seconds.
PERIOD = 3000

while True:
The phase is where we are in the unit circle now.
phase = watch.time()/PERIOD*2*pi

Each light follows a sine wave with a mean of 50, with an amplitude of 50.
We offset this sine wave by 90 degrees for each light, so that all the
lights do something different.
brightness = [sin(phase + offset*pi/2) * 50 + 50 for offset in range(4)]

Set the brightness values for all lights.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

48

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

eyes.lights.on(brightness)

Wait some time.
wait(50)

2.9 Force Sensor

class ForceSensor(port)
LEGO® SPIKE Force Sensor.

Parameters port (Port) – Port to which the sensor is connected.

force()
Measures the force exerted on the sensor.

Returns Measured force (up to approximately 10.00 N).

Return type force: N

distance()
Measures by how much the sensor button has moved.

Returns How much the sensor button has moved (up to approximately 8.00 mm).

Return type distance: mm

pressed(force=3)
Checks if the sensor button is pressed.

Parameters force (force: N) – Minimum force to be considered pressed.

Returns True if the sensor is pressed, False if it is not.

Return type bool

touched()
Checks if the sensor is touched.

This is similar to pressed(), but it detects slight movements of the button even when the measured
force is still considered zero.

Returns True if the sensor is touched or pressed, False if it is not.

Return type bool

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

49

Pybricks Modules and Examples Version v3.0.0-rc.1

2.9.1 Examples

Measuring force and movement

from pybricks.pupdevices import ForceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
button = ForceSensor(Port.A)

while True:
Read all the information we can get from this sensor.
force = button.force()
dist = button.distance()
press = button.pressed()
touch = button.touched()

Print the values
print("Force", force, "Dist:", dist, "Pressed:", press, "Touched:", touch)

Push the sensor button see what happens to the values.

Wait some time so we can read what is printed.
wait(200)

Measuring peak force

from pybricks.pupdevices import ForceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
button = ForceSensor(Port.A)

This function waits until the button is pushed. It keeps track of the maximum
detected force until the button is released. Then it returns the maximum.
def wait_for_force():

Wait for a force, by doing nothing for as long the force is nearly zero.
print("Waiting for force.")
while button.force() <= 0.1:

wait(10)

Now we wait for the release, by waiting for the force to be zero again.
print("Waiting for release.")

While we wait for that to happen, we keep reading the force and remember
the maximum force. We do this by initializing the maximum at 0, and
updating it each time we detect a bigger force.
maximum = 0
force = 10
while force > 0.1:

Read the force.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

50

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

force = button.force()

Update the maximum if the measured force is larger.
if force > maximum:

maximum = force

Wait and then measure again.
wait(10)

Return the maximum force.
return maximum

Keep waiting for the sensor button to be pushed. When it is, display
the peak force and repeat.
while True:

peak = wait_for_force()
print("Released. Peak force: {0} N\n".format(peak))

2.10 Light

class Light(port)
LEGO® Powered Up Light.

Parameters port (Port) – Port to which the device is connected.

on(brightness=100)
Turns on the light at the specified brightness.

Parameters brightness (brightness: %) – Brightness of the light.

off()
Turns off the light.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

51

Pybricks Modules and Examples Version v3.0.0-rc.1

2.10.1 Examples

Making the light blink

from pybricks.pupdevices import Light
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the light.
light = Light(Port.A)

Blink the light forever.
while True:

Turn the light on at 100% brightness.
light.on(100)
wait(500)

Turn the light off.
light.off()
wait(500)

Gradually change the brightness

from pybricks.pupdevices import Light
from pybricks.parameters import Port
from pybricks.tools import wait, StopWatch

The math module is part of standard MicroPython:
https://docs.micropython.org/en/latest/library/math.html
from math import pi, cos

Initialize the light and a StopWatch.
light = Light(Port.A)
watch = StopWatch()

Cosine pattern properties.
PERIOD = 2000
MAX = 100

Make the brightness fade in and out.
while True:

Get phase of the cosine.
phase = watch.time()/PERIOD*2*pi

Evaluate the brightness.
brightness = (0.5 - 0.5*cos(phase))*MAX

Set light brightness and wait a bit.
light.on(brightness)
wait(10)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

52

Pybricks Modules and Examples Version v3.0.0-rc.1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

53

dcmotor.html
motor.html
tiltsensor.html
infraredsensor.html

Pybricks Modules and Examples Version v3.0.0-rc.1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

54

colordistancesensor.html
pfmotor.html
colorsensor.html
ultrasonicsensor.html
forcesensor.html

Pybricks Modules and Examples Version v3.0.0-rc.1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

55

light.html

CHAPTER

THREE

EV3DEVICES – EV3 DEVICES

LEGO® MINDSTORMS® EV3 motors and sensors.

3.1 Motors

Figure 3.1: EV3-compatible motors. The arrows indicate the default positive direction.

class Motor(port, positive_direction=Direction.CLOCKWISE, gears=None)
Generic class to control motors with built-in rotation sensors.

Parameters

• port (Port) – Port to which the motor is connected.

• positive_direction (Direction) – Which direction the motor should turn when
you give a positive speed value or angle.

• gears (list) – List of gears linked to the motor.

For example: [12, 36] represents a gear train with a 12-tooth and a 36-tooth gear. Use a
list of lists for multiple gear trains, such as [[12, 36], [20, 16, 40]].

When you specify a gear train, all motor commands and settings are automatically adjusted
to account for the resulting gear ratio. The motor direction remains unchanged by this.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

56

Pybricks Modules and Examples Version v3.0.0-rc.1

Measuring

speed()
Gets the speed of the motor.

Returns Motor speed.

Return type rotational speed: deg/s

angle()
Gets the rotation angle of the motor.

Returns Motor angle.

Return type angle: deg

reset_angle(angle)
Sets the accumulated rotation angle of the motor to a desired value.

Parameters angle (angle: deg) – Value to which the angle should be reset.

Stopping

stop()
Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

brake()
Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

hold()
Stops the motor and actively holds it at its current angle.

Action

run(speed)
Runs the motor at a constant speed.

The motor accelerates to the given speed and keeps running at this speed until you give a new command.

Parameters speed (rotational speed: deg/s) – Speed of the motor.

run_time(speed, time, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed for a given amount of time.

The motor accelerates to the given speed, keeps running at this speed, and then decelerates. The total
maneuver lasts for exactly the given amount of time.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• time (time: ms) – Duration of the maneuver.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

57

Pybricks Modules and Examples Version v3.0.0-rc.1

run_angle(speed, rotation_angle, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed by a given angle.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• rotation_angle (angle: deg) – Angle by which the motor should rotate.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

run_target(speed, target_angle, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed towards a given target angle.

The direction of rotation is automatically selected based on the target angle. It does not matter if speed
is positive or negative.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• target_angle (angle: deg) – Angle that the motor should rotate to.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the motor to reach the target before continuing with the rest of
the program.

run_until_stalled(speed, then=Stop.COAST, duty_limit=None)
Runs the motor at a constant speed until it stalls.

Parameters

• speed (rotational speed: deg/s) – Speed of the motor.

• then (Stop) – What to do after coming to a standstill.

• duty_limit (percentage: %) – Duty cycle limit during this command. This is useful to
avoid applying the full motor torque to a geared or lever mechanism.

Returns Angle at which the motor becomes stalled.

Return type angle: deg

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

This method lets you use a motor just like a simple DC motor.

Parameters duty (percentage: %) – The duty cycle (-100.0 to 100).

Advanced motion control

track_target(target_angle)
Tracks a target angle. This is similar to run_target(), but the usual smooth acceleration is skipped: it
will move to the target angle as fast as possible. This method is useful if you want to continuously change
the target angle.

Parameters target_angle (angle: deg) – Target angle that the motor should rotate to.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

58

Pybricks Modules and Examples Version v3.0.0-rc.1

control
The motors use PID control to accurately track the speed and angle targets that you specify. You can
change its behavior through the control attribute of the motor. See The Control Class for an overview
of available methods.

3.2 Touch Sensor

class TouchSensor(port)
LEGO® MINDSTORMS® EV3 Touch Sensor.

Parameters port (Port) – Port to which the sensor is connected.

pressed()
Checks if the sensor is pressed.

Returns True if the sensor is pressed, False if it is not pressed.

Return type bool

3.3 Color Sensor

class ColorSensor(port)
LEGO® MINDSTORMS® EV3 Color Sensor.

Parameters port (Port) – Port to which the sensor is connected.

color()
Measures the color of a surface.

Returns Color.BLACK, Color.BLUE, Color.GREEN, Color.YELLOW, Color.RED,
Color.WHITE, Color.BROWN or None.

Return type Color, or None if no color is detected.

ambient()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

59

Pybricks Modules and Examples Version v3.0.0-rc.1

Return type percentage: %

reflection()
Measures the reflection of a surface using a red light.

Returns Reflection, ranging from 0 (no reflection) to 100 (high reflection).

Return type percentage: %

rgb()
Measures the reflection of a surface using a red, green, and then a blue light.

Returns Tuple of reflections for red, green, and blue light, each ranging from 0.0 (no reflection)
to 100.0 (high reflection).

Return type (percentage: %, percentage: %, percentage: %)

3.4 Infrared Sensor and Beacon

Each method of this class puts the sensor in a different mode. Switching modes takes about one second on this sensor.
To make sure that your program runs quickly, use only of these methods in your program.

class InfraredSensor(port)
LEGO® MINDSTORMS® EV3 Infrared Sensor and Beacon.

Parameters port (Port) – Port to which the sensor is connected.

distance()
Measures the relative distance between the sensor and an object using infrared light.

Returns Relative distance ranging from 0 (closest) to 100 (farthest).

Return type relative distance: %

beacon(channel)
Measures the relative distance and angle between the remote and the infrared sensor.

Parameters channel (int) – Channel number of the remote.

Returns Tuple of relative distance (0 to 100) and approximate angle (-75 to 75 degrees) between
remote and infrared sensor.

Return type (relative distance: %, angle: deg) or (None, None) if no remote is detected.

buttons(channel)
Checks which buttons on the infrared remote are pressed.

This method can detect up to two buttons at once. If you press more buttons, you may not get useful data.

Parameters channel (int) – Channel number of the remote.

Returns List of pressed buttons on the remote on selected channel.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

60

Pybricks Modules and Examples Version v3.0.0-rc.1

Return type List of Button

keypad()
Checks which buttons on the infrared remote are pressed.

This method can independently detect all 4 up/down buttons, but it cannot detect the beacon button.

This method only works with the remote in channel 1.

Returns List of pressed buttons on the remote on selected channel.

Return type List of Button

3.5 Ultrasonic Sensor

class UltrasonicSensor(port)
LEGO® MINDSTORMS® EV3 Ultrasonic Sensor.

Parameters port (Port) – Port to which the sensor is connected.

distance(silent=False)
Measures the distance between the sensor and an object using ultrasonic sound waves.

Parameters silent (bool) – Choose True to turn the sensor off after measuring the distance.
This reduces interference with other ultrasonic sensors. If you do this too frequently, the
sensor can freeze. If this happens, unplug it and plug it back in.

Returns Distance.

Return type distance: mm

presence()
Checks for the presence of other ultrasonic sensors by detecting ultrasonic sounds.

If the other ultrasonic sensor is operating in silent mode, you can only detect the presence of that sensor
while it is taking a measurement.

Returns True if ultrasonic sounds are detected, False if not.

Return type bool

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

61

Pybricks Modules and Examples Version v3.0.0-rc.1

3.6 Gyroscopic Sensor

class GyroSensor(port, positive_direction=Direction.CLOCKWISE)
LEGO® MINDSTORMS® EV3 Gyro Sensor.

Parameters

• port (Port) – Port to which the sensor is connected.

• positive_direction (Direction) – Positive rotation direction when looking at the
red dot on top of the sensor.

speed()
Gets the speed (angular velocity) of the sensor.

Returns Sensor angular velocity.

Return type rotational speed: deg/s

angle()
Gets the accumulated angle of the sensor.

Returns Rotation angle.

Return type angle: deg

If you use the angle() method, you cannot use the speed() method in the same program. Doing so
would reset the sensor angle to zero every time you read the speed.

reset_angle(angle)
Sets the rotation angle of the sensor to a desired value.

Parameters angle (angle: deg) – Value to which the angle should be reset.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

62

CHAPTER

FOUR

NXTDEVICES – NXT DEVICES

Use LEGO® MINDSTORMS® NXT motors and sensors with the EV3 brick.

4.1 NXT Motor

This motor works just like a LEGO MINDSTORMS EV3 Large Motor. You can use it in your programs using the
Motor class.

4.2 NXT Touch Sensor

class TouchSensor(port)
LEGO® MINDSTORMS® NXT Touch Sensor.

Parameters port (Port) – Port to which the sensor is connected.

pressed()
Checks if the sensor is pressed.

Returns True if the sensor is pressed, False if it is not pressed.

Return type bool

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

63

Pybricks Modules and Examples Version v3.0.0-rc.1

4.3 NXT Light Sensor

class LightSensor(port)
LEGO® MINDSTORMS® NXT Color Sensor.

Parameters port (Port) – Port to which the sensor is connected.

ambient()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).

Return type percentage: %

reflection()
Measures the reflection of a surface using a red light.

Returns Reflection, ranging from 0 (no reflection) to 100 (high reflection).

Return type percentage: %

4.4 NXT Color Sensor

class ColorSensor(port)
LEGO® MINDSTORMS® NXT Color Sensor.

Parameters port (Port) – Port to which the sensor is connected.

color()
Measures the color of a surface.

Returns Color.BLACK, Color.BLUE, Color.GREEN, Color.YELLOW, Color.RED,
Color.WHITE or Color.NONE.

Return type Color

ambient()
Measures the ambient light intensity.

Returns Ambient light intensity, ranging from 0 (dark) to 100 (bright).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

64

Pybricks Modules and Examples Version v3.0.0-rc.1

Return type percentage: %

reflection()
Measures the reflection of a surface.

Returns Reflection, ranging from 0 (no reflection) to 100 (high reflection).

Return type percentage: %

rgb()
Measures the reflection of a surface using a red, green, and then a blue light.

Returns Tuple of reflections for red, green, and blue light, each ranging from 0.0 (no reflection)
to 100.0 (high reflection).

Return type (percentage: %, percentage: %, percentage: %)

Built-in light

This sensor has a built-in light. You can make it red, green, blue, or turn it off.

light.on(color)
Turns on the light at the specified color.

Parameters color (Color) – Color of the light.

light.off()
Turns off the light.

4.5 NXT Ultrasonic Sensor

class UltrasonicSensor(port)
LEGO® MINDSTORMS® NXT Ultrasonic Sensor.

Parameters port (Port) – Port to which the sensor is connected.

distance()
Measures the distance between the sensor and an object using ultrasonic sound waves.

Returns Distance.

Return type distance: mm

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

65

Pybricks Modules and Examples Version v3.0.0-rc.1

4.6 NXT Sound Sensor

class SoundSensor(port)
LEGO® MINDSTORMS® NXT Sound Sensor.

Parameters port (Port) – Port to which the sensor is connected.

intensity(audible_only=True)
Measures the ambient sound intensity (loudness).

Parameters audible_only (bool) – Detect only audible sounds. This tries to filter out
frequencies that cannot be heard by the human ear.

Returns Sound intensity.

Return type percentage: %

4.7 NXT Temperature Sensor

class TemperatureSensor(port)
LEGO® MINDSTORMS® NXT Temperature Sensor.

Parameters port (Port) – Port to which the sensor is connected.

temperature()
Measures the temperature.

Returns Measured temperature.

Return type temperature: °C

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

66

Pybricks Modules and Examples Version v3.0.0-rc.1

4.8 NXT Energy Meter

class EnergyMeter(port)
LEGO® MINDSTORMS® Education NXT Energy Meter.

Parameters port (Port) – Port to which the sensor is connected.

storage()
Gets the total available energy stored in the battery.

Returns Remaining stored energy.

Return type energy: J

input()
Measures the electrical signals at the input (bottom) side of the energy meter. It measures the voltage
applied to it and the current passing through it. The product of these two values is power. This power
value is the rate at which the stored energy increases. This power is supplied by an energy source such as
the provided solar panel or an externally driven motor.

Returns Voltage, current, and power measured at the input port.

Return type (voltage: mV , current: mA, power: mW)

output()
Measures the electrical signals at the output (top) side of the energy meter. It measures the voltage applied
to the external load and the current passing to it. The product of these two values is power. This power
value is the rate at which the stored energy decreases. This power is consumed by the load, such as a light
or a motor.

Returns Voltage, current, and power measured at the output port.

Return type (voltage: mV , current: mA, power: mW)

4.9 Vernier Adapter

class VernierAdapter(port, conversion=None)
LEGO® MINDSTORMS® Education NXT/EV3 Adapter for Vernier Sensors.

Parameters

• port (Port) – Port to which the sensor is connected.

• conversion (callable) – Function of the format conversion. This function is used
to convert the raw analog voltage to the sensor-specific output value. Each Vernier Sensor
has its own conversion function. The example given below demonstrates the conversion for
the Surface Temperature Sensor.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

67

Pybricks Modules and Examples Version v3.0.0-rc.1

voltage()
Measures the raw analog sensor voltage.

Returns Analog voltage.

Return type voltage: mV

conversion(voltage)
Converts the raw voltage (mV) to a sensor value.

If you did not provide a conversion function earlier, no conversion will be applied.

Parameters voltage (voltage: mV) – Analog sensor voltage

Returns Converted sensor value.

Return type float

value()
Measures the sensor voltage() and then applies your conversion() to give you the sensor value.

Returns Converted sensor value.

Return type float

Example: Using the Surface Temperature Sensor.

#!/usr/bin/env pybricks-micropython
from pybricks.parameters import Port
from pybricks.nxtdevices import VernierAdapter

from math import log

Conversion formula for Surface Temperature Sensor
def convert_raw_to_temperature(voltage):

Convert the raw voltage to the NTC resistance
according to the Vernier Adapter EV3 block.
counts = voltage/5000*4096
ntc = 15000*(counts)/(4130-counts)

Handle log(0) safely: make sure that ntc value is positive.
if ntc <= 0:

ntc = 1

Apply Steinhart-Hart equation as given in the sensor documentation.
K0 = 1.02119e-3
K1 = 2.22468e-4
K2 = 1.33342e-7
return 1/(K0 + K1*log(ntc) + K2*log(ntc)**3)

Initialize the adapter on port 1
thermometer = VernierAdapter(Port.S1, convert_raw_to_temperature)

Get the measured value and print it
temp = thermometer.value()
print(temp)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

68

CHAPTER

FIVE

IODEVICES – GENERIC I/O DEVICES

Generic input/output devices.

5.1 Powered Up Device

class PUPDevice(port)
Powered Up motor or sensor.

Parameters port (Port) – Port to which the device is connected.

info()
Returns information about the device.

Returns Dictionary with information, such as the device id.

Return type dict

read(mode)
Reads values from a given mode.

Parameters mode (int) – Device mode.

Returns Values read from the sensor.

Return type tuple

write(mode, data)
Writes values to the sensor. Only selected sensors and modes support this.

Parameters

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

69

Pybricks Modules and Examples Version v3.0.0-rc.1

• mode (int) – Device mode.

• data (tuple) – Values to be written.

5.1.1 Examples

Detecting devices

from pybricks.iodevices import PUPDevice
from pybricks.parameters import Port
from uerrno import ENODEV

Dictionary of device identifiers along with their name.
device_names = {

34: "Wedo 2.0 Tilt Sensor",
35: "Wedo 2.0 Infrared Sensor",
37: "BOOST Color Distance Sensor",
38: "BOOST Interactive Motor",
46: "Technic Large Motor",
47: "Technic Extra Large Motor",
48: "SPIKE Medium Angular Motor",
49: "SPIKE Large Angular Motor",
61: "SPIKE Color Sensor",
62: "SPIKE Ultrasonic Sensor",
63: "SPIKE Force Sensor",
75: "Technic Medium Angular Motor",
76: "Technic Large Angular Motor",

}

Make a list of known ports.
ports = [Port.A, Port.B]

On hubs that support it, add more ports.
try:

ports.append(Port.C)
ports.append(Port.D)

except AttributeError:
pass

On hubs that support it, add more ports.
try:

ports.append(Port.E)
ports.append(Port.F)

except AttributeError:
pass

Go through all available ports.
for port in ports:

Try to get the device, if it is attached.
try:

device = PUPDevice(port)
except OSError as ex:

if ex.args[0] == ENODEV:
No device found on this port.
print(port, ": ---")

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

70

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

continue
else:

raise

Get the device id
id = device.info()['id']

Look up the name.
try:

print(port, ":", device_names[id])
except KeyError:

print(port, ":", "Unknown device with ID", id)

5.2 Generic I2C Device

Note: This class is only supported on the EV3 at this time. It could be added to Powered Up hubs in a future release.
If you’d like to see this happen, be sure to ask us on our support page.

class I2CDevice(port, address)
Generic or custom I2C device.

Parameters

• port (Port) – Port to which the device is connected.

• address (int) – I2C address of the client device. See I2C Addresses.

read(reg, length=1)
Reads bytes, starting at a given register.

Parameters

• reg (int) – Register at which to begin reading: 0–255 or 0x00–0xFF.

• length (int) – How many bytes to read.

Returns Bytes returned from the device.

Return type bytes

write(reg, data=None)
Writes bytes, starting at a given register.

Parameters

• reg (int) – Register at which to begin writing: 0–255 or 0x00–0xFF.

• data (bytes) – Bytes to be written.

Example: Read and write to an I2C device

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

71

https://github.com/pybricks/support/issues/

Pybricks Modules and Examples Version v3.0.0-rc.1

#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.iodevices import I2CDevice
from pybricks.parameters import Port

Initialize the EV3
ev3 = EV3Brick()

Initialize I2C Sensor
device = I2CDevice(Port.S2, 0xD2 >> 1)

Read one byte from the device.
For this device, we can read the Who Am I
register (0x0F) for the expected value: 211.
if 211 not in device.read(0x0F):

raise ValueError("Unexpected I2C device ID")

To write data, create a bytes object of one
or more bytes. For example:
data = bytes((1, 2, 3))

Write one byte (value 0x08) to register 0x22
device.write(0x22, bytes((0x08,)))

5.2.1 I2C Addresses

I2C addresses are 7-bit values. However, most vendors who make LEGO compatible sensors provide an 8-bit address
in their documentation. To use those addresses, you must shift them by 1 bit. For example, if the documented address
is 0xD2, you can do address = 0xD2 >> 1.

5.2.2 Advanced I2C Commands

Some rudimentary I2C devices do not require a register argument or even any data. You can achieve this behavior as
shown in the examples below.

Example: Advanced I2C read and write techniques

#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.iodevices import I2CDevice
from pybricks.parameters import Port

Initialize the EV3
ev3 = EV3Brick()

Initialize I2C Sensor
device = I2CDevice(Port.S2, 0xD2 >> 1)

Recommended for reading
result, = device.read(reg=0x0F, length=1)

Read 1 byte from no particular register:
device.read(reg=None, length=1)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

72

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

Read 0 bytes from no particular register:
device.read(reg=None, length=0)

I2C write operations consist of a register byte followed
by a series of data bytes. Depending on your device, you
can choose to skip the register or data as follows:

Recommended for writing:
device.write(reg=0x22, data=b'\x08')

Write 1 byte to no particular register:
device.write(reg=None, data=b'\x08')

Write 0 bytes to a particular register:
device.write(reg=0x08, data=None)

Write 0 bytes to no particular register:
device.write(reg=None, data=None)

Additional technical resources

The I2CDevice class methods call functions from the Linux SMBus driver. To find out which commands are called
under the hood, check the Pybricks source code. More details about using I2C without MicroPython can be found on
the ev3dev I2C page.

5.3 Generic UART Device

Note: This class is only supported on the EV3 at this time. It could be added to Powered Up hubs in a future release.
If you’d like to see this happen, be sure to ask us on our support page.

class UARTDevice(port, baudrate, timeout=None)
Generic UART device.

Parameters

• port (Port) – Port to which the device is connected.

• baudrate (int) – Baudrate of the UART device.

• timeout (time: ms) – How long to wait during read before giving up. If you choose
None, it will wait forever.

read(length=1)
Reads a given number of bytes from the buffer.

Your program will wait until the requested number of bytes are received. If this takes longer than
timeout, the ETIMEDOUT exception is raised.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

73

https://github.com/pybricks/pybricks-micropython
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/i2c.html
https://github.com/pybricks/support/issues/

Pybricks Modules and Examples Version v3.0.0-rc.1

Parameters length (int) – How many bytes to read.

Returns Bytes returned from the device.

Return type bytes

read_all()
Reads all bytes from the buffer.

Returns Bytes returned from the device.

Return type bytes

write(data)
Writes bytes.

Parameters data (bytes) – Bytes to be written.

waiting()
Gets how many bytes are still waiting to be read.

Returns Number of bytes in the buffer.

Return type int

clear()
Empties the buffer.

Example: Read and write to a UART device

#!/usr/bin/env pybricks-micropython
from pybricks.hubs import EV3Brick
from pybricks.iodevices import UARTDevice
from pybricks.parameters import Port
from pybricks.media.ev3dev import SoundFile

Initialize the EV3
ev3 = EV3Brick()

Initialize sensor port 2 as a uart device
ser = UARTDevice(Port.S2, baudrate=115200)

Write some data
ser.write(b'\r\nHello, world!\r\n')

Play a sound while we wait for some data
for i in range(3):

ev3.speaker.play_file(SoundFile.HELLO)
ev3.speaker.play_file(SoundFile.GOOD)
ev3.speaker.play_file(SoundFile.MORNING)
print("Bytes waiting to be read:", ser.waiting())

Read all data received while the sound was playing
data = ser.read_all()
print(data)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

74

Pybricks Modules and Examples Version v3.0.0-rc.1

5.4 EV3 Analog Sensor

Note: This class is only available on EV3.

class AnalogSensor(port)
Generic or custom analog sensor.

Parameters port (Port) – Port to which the sensor is connected.

voltage()
Measures analog voltage.

Returns Analog voltage.

Return type voltage: mV

resistance()
Measures resistance.

This value is only meaningful if the analog device is a passive load such as a resistor or thermistor.

Returns Resistance of the analog device.

Return type resistance:

active()
Sets sensor to active mode. This sets pin 5 of the sensor port to high.

This is used in some analog sensors to control a switch. For example, if you use the NXT Light Sensor
as a custom analog sensor, this method will turn the light on. From then on, voltage() returns the raw
reflected light value.

passive()
Sets sensor to passive mode. This sets pin 5 of the sensor port to low.

This is used in some analog sensors to control a switch. For example, if you use the NXT Light Sensor
as a custom analog sensor, this method will turn the light off. From then on, voltage() returns the raw
ambient light value.

5.5 EV3 UART Device

Note: This class is only available on EV3.

class LUMPDevice(port)
Devices using the LEGO UART Messaging Protocol.

Parameters port (Port) – Port to which the device is connected.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

75

Pybricks Modules and Examples Version v3.0.0-rc.1

read(mode)
Reads values from a given mode.

Parameters mode (int) – Device mode.

Returns Values read from the sensor.

Return type tuple

5.6 EV3 DC Motor

Note: This class is specifically for on EV3. For Powered Up DC Motors, just use the DCMotor class.

class DCMotor(port, positive_direction=Direction.CLOCKWISE)
Generic class to control simple motors without rotation sensors, such as train motors.

Parameters

• port (Port) – Port to which the motor is connected.

• positive_direction (Direction) – Which direction the motor should turn when
you give a positive duty cycle value.

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

Parameters duty (percentage: %) – The duty cycle (-100.0 to 100).

stop()
Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

76

Pybricks Modules and Examples Version v3.0.0-rc.1

5.7 Ev3dev sensors

Note: This class is only available on EV3.

EV3 MicroPython is built on top of ev3dev, which means that a sensor may be supported even if it is not listed in this
documentation. If so, you can use it with the Ev3devSensor class. This is easier and faster than using the custom
device classes given above.

To check whether you can use the Ev3devSensor class:

• Plug the sensor into your EV3 Brick.

• Go to the main menu of the EV3 Brick.

• Select Device Browser and then Sensors.

• If your sensor shows up, you can use it.

Now select your sensor from the menu and choose set mode. This shows all available modes for this sensor. You can
use these mode names as the mode setting below.

To learn more about compatible devices and what each mode does, visit the ev3dev sensors page.

class Ev3devSensor(port)
Read values of an ev3dev-compatible sensor.

Parameters port (Port) – Port to which the device is connected.

sensor_index
Index of the ev3dev sysfs lego-sensor class.

port_index
Index of the ev3dev sysfs lego-port class.

read(mode)
Reads values at a given mode.

Parameters mode (str) – Mode name.

Returns Values read from the sensor.

Return type tuple

Example: Reading values with the Ev3devSensor class

In this example we use the LEGO MINDSTORMS EV3 Color Sensor with the raw RGB mode. This gives uncalibrated
red, green, and blue reflection values.

#!/usr/bin/env pybricks-micropython
from pybricks.parameters import Port
from pybricks.tools import wait

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

77

http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/sensors.html
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/sensors.html#the-lego-sensor-subsytem
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/ports.html#the-lego-port-subsystem
http://docs.ev3dev.org/projects/lego-linux-drivers/en/ev3dev-stretch/sensor_data.html

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

from pybricks.iodevices import Ev3devSensor

Initialize an Ev3devSensor.
In this example we use the
LEGO MINDSTORMS EV3 Color Sensor.
sensor = Ev3devSensor(Port.S3)

while True:
Read the raw RGB values
r, g, b = sensor.read('RGB-RAW')

Print results
print('R: {0}\t G: {1}\t B: {2}'.format(r, g, b))

Wait
wait(200)

Example: Extending the Ev3devSensor class

This example shows how to extend the Ev3devSensor class by accessing additional features found in the Linux
system folder for this device.

#!/usr/bin/env pybricks-micropython
from pybricks.parameters import Port
from pybricks.iodevices import Ev3devSensor

class MySensor(Ev3devSensor):
"""Example of extending the Ev3devSensor class."""

def __init__(self, port):
"""Initialize the sensor."""

Initialize the parent class.
super().__init__(port)

Get the sysfs path.
self.path = '/sys/class/lego-sensor/sensor' + str(self.sensor_index)

def get_modes(self):
"""Get a list of mode strings so we don't have to look them up."""

The path of the modes file.
modes_path = self.path + '/modes'

Open the modes file.
with open(modes_path, 'r') as m:

Read the contents.
contents = m.read()

Strip the newline symbol, and split at every space symbol.
return contents.strip().split(' ')

Initialize the sensor
sensor = MySensor(Port.S3)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

78

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

Show where this sensor can be found
print(sensor.path)

Print the available modes
modes = sensor.get_modes()
print(modes)

Read mode 0 of this sensor
val = sensor.read(modes[0])
print(val)

Figure 5.1: This class is only available on Powered Up hubs.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

79

pupdevice.html
i2cdevice.html
uartdevice.html

Pybricks Modules and Examples Version v3.0.0-rc.1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

80

analogsensor.html
lumpdevice.html
dcmotor.html
ev3devsensor.html

CHAPTER

SIX

PARAMETERS – PARAMETERS AND CONSTANTS

Constant parameters/arguments for the Pybricks API.

6.1 Button

class Button
Buttons on a hub or remote.

LEFT_DOWN

LEFT_MINUS

DOWN

RIGHT_DOWN

RIGHT_MINUS

LEFT

CENTER

RIGHT

LEFT_UP

LEFT_PLUS

UP

BEACON

RIGHT_UP

RIGHT_PLUS

6.2 Color

class Color(h, s=100, v=100)
Light or surface color.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

81

Pybricks Modules and Examples Version v3.0.0-rc.1

Saturated colors

These colors have maximum saturation and brightness value. They differ only in hue.

RED = Color(h=0, s=100, v=100)

ORANGE = Color(h=30, s=100, v=100)

YELLOW = Color(h=60, s=100, v=100)

GREEN = Color(h=120, s=100, v=100)

CYAN = Color(h=180, s=100, v=100)

BLUE = Color(h=240, s=100, v=100)

VIOLET = Color(h=270, s=100, v=100)

MAGENTA = Color(h=300, s=100, v=100)

Unsaturated colors

These colors have zero hue and saturation. They differ only in brightness value.

When detecting these colors using sensors, their values depend a lot on the distance to the object. If the distance
between the sensor and the object is not constant in your robot, it is better to use only one of these colors in your
programs.

WHITE = Color(h=0, s=0, v=100)

GRAY = Color(h=0, s=0, v=50)

BLACK = Color(h=0, s=0, v=10)
This represents dark objects that still reflect a very small amount of light.

NONE = Color(h=0, s=0, v=0)
This is total darkness, with no reflection or light at all.

Making your own colors

This example shows the basics of color properties, and how to define new colors.

from pybricks.parameters import Color

You can print colors. Colors may be obtained from the Color class, or
from sensors that return color measurements.
print(Color.RED)

You can read hue, saturation, and value properties.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

82

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

print(Color.RED.h, Color.RED.s, Color.RED.v)

You can make your own colors. Saturation and value are 100 by default.
my_green = Color(h=125)
my_dark_green = Color(h=125, s=80, v=30)

When you print custom colors, you see exactly how they were defined.
print(my_dark_green)

You can also add colors to the builtin colors.
Color.MY_DARK_BLUE = Color(h=235, s=80, v=30)

When you add them like this, printing them only shows its name. But you can
still read h, s, v by reading its attributes.
print(Color.MY_DARK_BLUE)
print(Color.MY_DARK_BLUE.h, Color.MY_DARK_BLUE.s, Color.MY_DARK_BLUE.v)

This example shows more advanced use cases of the Color class.

from pybricks.parameters import Color

Two colors are equal if their h, s, and v attributes are equal.
if Color.BLUE == Color(240, 100, 100):

print("Yes, these colors are the same.")

You can scale colors to change their brightness value.
red_dark = Color.RED * 0.5

You can shift colors to change their hue.
red_shifted = Color.RED >> 30

Colors are immutable, so you can't change h, s, or v of an existing object.
try:

Color.GREEN.h = 125
except AttributeError:

print("Sorry, can't change the hue of an existing color object!")

But you can override builtin colors by defining a whole new color.
Color.GREEN = Color(h=125)

You can access and store colors as class attributes, or as a dictionary.
print(Color.BLUE)
print(Color["BLUE"])
print(Color["BLUE"] is Color.BLUE)
print(Color)
print([c for c in Color])

This allows you to update existing colors in a loop.
for name in ("BLUE", "RED", "GREEN"):

Color[name] = Color(1, 2, 3)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

83

Pybricks Modules and Examples Version v3.0.0-rc.1

6.3 Direction

class Direction
Rotational direction for positive speed or angle values.

CLOCKWISE
A positive speed value should make the motor move clockwise.

COUNTERCLOCKWISE
A positive speed value should make the motor move counterclockwise.

positive_direction = Positive speed: Negative speed:
Direction.CLOCKWISE clockwise counterclockwise
Direction.COUNTERCLOCKWISE counterclockwise clockwise

In general, clockwise is defined by looking at the motor shaft, just like looking at a clock. Some motors have
two shafts. If in doubt, refer to the diagram in the Motor class documentation.

6.4 Port

class Port
Input and output ports:

A

B

C

D

E

F

EV3 Sensor ports:

S1

S2

S3

S4

6.5 Stop

class Stop
Action after the motor stops.

COAST
Let the motor move freely.

BRAKE
Passively resist small external forces.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

84

Pybricks Modules and Examples Version v3.0.0-rc.1

HOLD
Keep controlling the motor to hold it at the commanded angle. This is only available on motors with
encoders.

The following table shows how each stop type adds an extra level of resistance to motion. In these examples, m
is a Motor and and d is a DriveBase. The examples also show how running at zero speed compares to these
stop types.

Type Friction Back
EMF

Speed
kept at 0

Angle kept
at target

Examples

Coast
•

m.stop()

m.
run_target(500,
90,
Stop.
COAST)

Brake
• •

m.brake()

m.
run_target(500,
90,
Stop.
BRAKE)

• • •
m.run(0)

d.drive(0,
0)

Hold
• • • •

m.hold()

m.
run_target(500,
90,
Stop.HOLD)

d.
straight(0)

d.
straight(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

85

CHAPTER

SEVEN

TOOLS – GENERAL PURPOSE TOOLS

Common tools for timing and data logging.

7.1 Data logging

At the moment, this class is only available on EV3.

class DataLog(*headers, name='log', timestamp=True, extension='csv', append=False)
Create a file and log data.

Parameters

• headers (col1, col2, . . .) – Column headers. These are the names of the data columns.
For example, choose 'time' and 'angle'.

• name (str) – Name of the file.

• timestamp (bool) – Choose True to add the date and time to the file name. This way,
your file has a unique name. Choose False to omit the timestamp.

• extension (str) – File extension.

• append (bool) – Choose True to reopen an existing data log file and append data to it.
Choose False to clear existing data. If the file does not exist yet, an empty file will be
created either way.

log(*values)
Saves one or more values on a new line in the file.

Parameters values (object, object, . . .) – One or more objects or values.

By default, this class creates a csv file on the EV3 brick with the name log and the current date and time.
For example, if you use this class on 13 February 2020 on 10:07 and 44.431260 seconds, the file is called
log_2020_02_13_10_07_44_431260.csv.

See managing files on the EV3 to learn how to upload the log file back to your computer.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

86

https://pybricks.com/install/mindstorms-ev3/running-programs#managing-files-on-the-ev3-brick

Pybricks Modules and Examples Version v3.0.0-rc.1

7.1.1 Examples

Logging and visualizing measurements

This example shows how to log the angle of a rotating wheel as time passes.

#!/usr/bin/env pybricks-micropython
from pybricks.ev3devices import Motor
from pybricks.parameters import Port
from pybricks.tools import DataLog, StopWatch, wait

Create a data log file in the project folder on the EV3 Brick.
* By default, the file name contains the current date and time, for example:
log_2020_02_13_10_07_44_431260.csv
* You can optionally specify the titles of your data columns. For example,
if you want to record the motor angles at a given time, you could do:
data = DataLog('time', 'angle')

Initialize a motor and make it move
wheel = Motor(Port.B)
wheel.run(500)

Start a stopwatch to measure elapsed time
watch = StopWatch()

Log the time and the motor angle 10 times
for i in range(10):

Read angle and time
angle = wheel.angle()
time = watch.time()

Each time you use the log() method, a new line with data is added to
the file. You can add as many values as you like.
In this example, we save the current time and motor angle:
data.log(time, angle)

Wait some time so the motor can move a bit
wait(100)

You can now upload your file to your computer

In this example, the generated file has the following contents:

time, angle
3, 0
108, 6
212, 30
316, 71
419, 124
523, 176
628, 228
734, 281
838, 333
942, 385

When you upload the file to your computer as shown above, you can open it in a spreadsheet editor. You can then
generate a graph of the data, as shown in Figure 7.1.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

87

Pybricks Modules and Examples Version v3.0.0-rc.1

In this example, we see that the motor angle changes slowly at first. Then the angle begins to change faster, and the
graph becomes a straight line. This means that the motor has reached a constant speed. You can verify that the angle
increases by 500 degrees per second.

Figure 7.1: Original file contents (left) and a generated graph (right).

Using the optional arguments

This example shows how to log data beyond just numbers. It also shows how you can use the optional arguments of
the DataLog class to choose the file name and extension.

In this example, timestamp=False, which means that the date and time are not added to the file name. This can be
convenient because the file name will always be the same. However, this means that the contents of my_file.txt
will be overwritten every time you run this script.

#!/usr/bin/env pybricks-micropython
from pybricks.parameters import Color
from pybricks.tools import DataLog

Create a data log file called my_file.txt
data = DataLog('time', 'angle', name='my_file', timestamp=False, extension='txt')

The log method uses the print() method to add a line of text.
So, you can do much more than saving numbers. For example:
data.log('Temperature', 25)
data.log('Sunday', 'Monday', 'Tuesday')
data.log({'Kiwi': Color.GREEN}, {'Banana': Color.YELLOW})

You can upload the file to your computer, but you can also print the data:
print(data)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

88

Pybricks Modules and Examples Version v3.0.0-rc.1

7.2 Timing

wait(time)
Pauses the user program for a specified amount of time.

Parameters time (time: ms) – How long to wait.

class StopWatch
A stopwatch to measure time intervals. Similar to the stopwatch feature on your phone.

time()
Gets the current time of the stopwatch.

Returns Elapsed time.

Return type time: ms

pause()
Pauses the stopwatch.

resume()
Resumes the stopwatch.

reset()
Resets the stopwatch time to 0.

The run state is unaffected:

• If it was paused, it stays paused (but now at 0).

• If it was running, it stays running (but starting again from 0).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

89

CHAPTER

EIGHT

ROBOTICS – ROBOTICS

Robotics module for the Pybricks API.

class DriveBase(left_motor, right_motor, wheel_diameter, axle_track)
A robotic vehicle with two powered wheels and an optional support wheel or caster.

By specifying the dimensions of your robot, this class makes it easy to drive a given distance in millimeters or
turn by a given number of degrees.

Positive distances and drive speeds mean driving forward. Negative means backward.

Positive angles and turn rates mean turning right. Negative means left. So when viewed from the top, positive
means clockwise and negative means counterclockwise.

Parameters

• left_motor (Motor) – The motor that drives the left wheel.

• right_motor (Motor) – The motor that drives the right wheel.

• wheel_diameter (dimension: mm) – Diameter of the wheels.

• axle_track (dimension: mm) – Distance between the points where both wheels touch
the ground.

Driving for a given distance or by an angle

Use the following commands to drive a given distance, or turn by a given angle.

This is measured using the internal rotation sensors. Because wheels may slip while moving, the traveled
distance and angle are only estimates.

straight(distance)
Drives straight for a given distance and then stops.

Parameters distance (distance: mm) – Distance to travel.

turn(angle)
Turns in place by a given angle and then stops.

Parameters angle (angle: deg) – Angle of the turn.

settings(straight_speed, straight_acceleration, turn_rate, turn_acceleration)
Configures the speed and acceleration used by straight() and turn().

If you give no arguments, this returns the current values as a tuple.

You can only change the settings while the robot is stopped. This is either before you begin driving or after
you call stop().

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

90

Pybricks Modules and Examples Version v3.0.0-rc.1

Parameters

• straight_speed (speed: mm/s) – Speed of the robot during straight().

• straight_acceleration (linear acceleration: mm/s/s) – Acceleration and deceler-
ation of the robot at the start and end of straight().

• turn_rate (rotational speed: deg/s) – Turn rate of the robot during turn().

• turn_acceleration (rotational acceleration: deg/s/s) – Angular acceleration and
deceleration of the robot at the start and end of turn().

Drive forever

Use drive() to begin driving at a desired speed and steering.

It keeps going until you use stop() or change course by using drive() again. For example, you can drive
until a sensor is triggered and then stop or turn around.

drive(speed, turn_rate)
Starts driving at the specified speed and turn rate. Both values are measured at the center point between
the wheels of the robot.

Parameters

• speed (speed: mm/s) – Speed of the robot.

• turn_rate (rotational speed: deg/s) – Turn rate of the robot.

stop()
Stops the robot by letting the motors spin freely.

Measuring

distance()
Gets the estimated driven distance.

Returns Driven distance since last reset.

Return type distance: mm

angle()
Gets the estimated rotation angle of the drive base.

Returns Accumulated angle since last reset.

Return type angle: deg

state()
Gets the state of the robot.

This returns the current distance(), the drive speed, the angle(), and the turn rate.

Returns Distance, drive speed, angle, turn rate

Return type (distance: mm, speed: mm/s, angle: deg, rotational speed: deg/s)

reset()
Resets the estimated driven distance and angle to 0.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

91

Pybricks Modules and Examples Version v3.0.0-rc.1

Measuring and validating the robot dimensions

As a first estimate, you can measure the wheel_diameter and the axle_track with a ruler. Because it is
hard to see where the wheels effectively touch the ground, you can estimate the axle_track as the distance
between the midpoint of the wheels.

In practice, most wheels compress slightly under the weight of your robot. To verify, make your robot drive 1000
mm using my_robot.straight(1000) and measure how far it really traveled. Compensate as follows:

• If your robot drives not far enough, decrease the wheel_diameter value slightly.

• If your robot drives too far, increase the wheel_diameter value slightly.

Motor shafts and axles bend slightly under the load of the robot, causing the ground contact point of the wheels
to be closer to the midpoint of your robot. To verify, make your robot turn 360 degrees using my_robot.
turn(360) and check that it is back in the same place:

• If your robot turns not far enough, increase the axle_track value slightly.

• If your robot turns too far, decrease the axle_track value slightly.

When making these adjustments, always adjust the wheel_diameter first, as done above. Be sure to test
both turning and driving straight after you are done.

Using the DriveBase motors individually

Suppose you make a DriveBase object using two Motor objects called left_motor and right_motor.
You cannot use these motors individually while the DriveBase is active.

The DriveBase is active if it is driving, but also when it is actively holding the wheels in place after a
straight() or turn() command. To deactivate the DriveBase, call stop().

Advanced Settings

The settings() method is used to adjust commonly used settings like the default speed and acceleration for
straight maneuvers and turns. Use the following attributes to adjust more advanced control setttings.

You can only change the settings while the robot is stopped. This is either before you begin driving or after you
call stop().

distance_control
The traveled distance and drive speed are controlled by a PID controller. You can use this attribute to
change its settings. See The Control Class for an overview of available methods.

heading_control
The robot turn angle and turn rate are controlled by a PID controller. You can use this attribute to change
its settings. See The Control Class for an overview of available methods.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

92

CHAPTER

NINE

MEDIA – SOUNDS AND IMAGES

This module describes media such as sound and images that you can use in your projects. Media are divided into
submodules that indicate on which platform they are available.

9.1 media.ev3dev – Sounds and Images

EV3 MicroPython is built on top of ev3dev, which comes with a variety of image and sound files. You can access
them using the classes below.

You can also use your own sound and image files by placing them in your project folder.

9.1.1 Image Files

class ImageFile
Paths to standard EV3 images.

Information

ACCEPT

BACKWARD

DECLINE

FORWARD

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

93

Pybricks Modules and Examples Version v3.0.0-rc.1

LEFT

NO_GO

QUESTION_MARK

RIGHT

STOP_1

STOP_2

THUMBS_DOWN

THUMBS_UP

WARNING

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

94

Pybricks Modules and Examples Version v3.0.0-rc.1

LEGO

EV3

EV3_ICON

Objects

TARGET

Eyes

ANGRY

AWAKE

BOTTOM_LEFT

BOTTOM_RIGHT

CRAZY_1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

95

Pybricks Modules and Examples Version v3.0.0-rc.1

CRAZY_2

DIZZY

DOWN

EVIL

KNOCKED_OUT

MIDDLE_LEFT

MIDDLE_RIGHT

NEUTRAL

PINCHED_LEFT

PINCHED_MIDDLE

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

96

Pybricks Modules and Examples Version v3.0.0-rc.1

PINCHED_RIGHT

SLEEPING

TIRED_LEFT

TIRED_MIDDLE

TIRED_RIGHT

UP

WINKING

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

97

Pybricks Modules and Examples Version v3.0.0-rc.1

9.1.2 Sound Files

class SoundFile
Paths to standard EV3 sounds.

Expressions

BOING

Download

BOO

Download

CHEERING

Download

CRUNCHING

Download

CRYING

Download

FANFARE

Download

KUNG_FU

Download

LAUGHING_1

Download

LAUGHING_2

Download

MAGIC_WAND

Download

OUCH

Download

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

98

Pybricks Modules and Examples Version v3.0.0-rc.1

SHOUTING

Download

SMACK

Download

SNEEZING

Download

SNORING

Download

UH_OH

Download

Information

ACTIVATE

Download

ANALYZE

Download

BACKWARDS

Download

COLOR

Download

DETECTED

Download

DOWN

Download

ERROR

Download

ERROR_ALARM

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

99

Pybricks Modules and Examples Version v3.0.0-rc.1

Download

FLASHING

Download

FORWARD

Download

LEFT

Download

OBJECT

Download

RIGHT

Download

SEARCHING

Download

START

Download

STOP

Download

TOUCH

Download

TURN

Download

UP

Download

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

100

Pybricks Modules and Examples Version v3.0.0-rc.1

Communication

BRAVO

Download

EV3

Download

FANTASTIC

Download

GAME_OVER

Download

GO

Download

GOOD_JOB

Download

GOOD

Download

GOODBYE

Download

HELLO

Download

HI

Download

LEGO

Download

MINDSTORMS

Download

MORNING

Download

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

101

Pybricks Modules and Examples Version v3.0.0-rc.1

NO

Download

OKAY

Download

OKEY_DOKEY

Download

SORRY

Download

THANK_YOU

Download

YES

Download

Movement sounds

SPEED_DOWN

Download

SPEED_IDLE

Download

SPEED_UP

Download

Colors

BLACK

Download

BLUE

Download

BROWN

Download

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

102

Pybricks Modules and Examples Version v3.0.0-rc.1

GREEN

Download

RED

Download

WHITE

Download

YELLOW

Download

Mechanical

AIR_RELEASE

Download

AIRBRAKE

Download

BACKING_ALERT

Download

HORN_1

Download

HORN_2

Download

LASER

Download

MOTOR_IDLE

Download

MOTOR_START

Download

MOTOR_STOP

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

103

Pybricks Modules and Examples Version v3.0.0-rc.1

Download

RATCHET

Download

SONAR

Download

TICK_TACK

Download

Animal sounds

CAT_PURR

Download

DOG_BARK_1

Download

DOG_BARK_2

Download

DOG_GROWL

Download

DOG_SNIFF

Download

DOG_WHINE

Download

ELEPHANT_CALL

Download

INSECT_BUZZ_1

Download

INSECT_BUZZ_2

Download

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

104

Pybricks Modules and Examples Version v3.0.0-rc.1

INSECT_CHIRP

Download

SNAKE_HISS

Download

SNAKE_RATTLE

Download

T_REX_ROAR

Download

Numbers

ZERO

Download

ONE

Download

TWO

Download

THREE

Download

FOUR

Download

FIVE

Download

SIX

Download

SEVEN

Download

EIGHT

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

105

Pybricks Modules and Examples Version v3.0.0-rc.1

Download

NINE

Download

TEN

Download

System sounds

CLICK

Download

CONFIRM

Download

GENERAL_ALERT

Download

OVERPOWER

Download

READY

Download

9.1.3 Fonts

class Font(family=None, size=12, bold=False, monospace=False, lang=None, script=None)
Object that represents a font for writing text.

The font object will be a font that is the “best” match based on the parameters given and available fonts installed.

Parameters

• family (str) – The preferred font family or None to use the default value.

• size (int) – The preferred font size. Most fonts have sizes between 6 and 24. This is the
“point” size and not the same as height.

• bold (bool) – When True, prefer bold fonts.

• monospace (bool) – When True prefer monospaced fonts. This is useful for aligning
multiple rows of text.

• lang (str) – A language code, such as 'en' or 'zh-cn' or None to use the default
language.1

1 Note: Languages depend on installed fonts. Additional language codes are possible and some listed language codes may not have a satisfactory
font.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

106

Pybricks Modules and Examples Version v3.0.0-rc.1

• script (str) – A unicode script identifier such as 'Runr' or None.

DEFAULT = Font('Lucida', 12)
The default font.

family
Gets the family name of the font.

– 'aa': Afar

– 'af': Afrikaans

– 'an': Aragonese

– 'av': Avaric

– 'ay': Aymara

– 'az-az': Azerbaijani

– 'be': Belarusian

– 'bg': Bulgarian

– 'bi': Bislama

– 'bm': Bambara

– 'br': Breton

– 'bs': Bosnian

– 'bua': Buriat

– 'ca': Catalan

– 'ce': Chechen

– 'ch': Chamorro

– 'co': Corsican

– 'crh': Crimean

– 'cs': Czech

– 'csb': Kashubian

– 'cy': Welsh

– 'da': Danish

– 'de': German

– 'ee': Ewe

– 'el': Greek

– 'en': English

– 'eo': Esperanto

– 'es': Spanish

– 'et': Estonian

– 'eu': Basque

– 'ff': Fulah

– 'fi': Finnish

– 'fil': Filipino

– 'fj': Fijian

– 'fo': Faroese

– 'fr': French

– 'fur': Friulian

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

107

Pybricks Modules and Examples Version v3.0.0-rc.1

style
Gets a string describing the font style.

Can be “Regular” or “Bold”.

width
Gets the width of the widest character of the font.

– 'fy': Western Frisian

– 'ga': Irish

– 'gd': Gaelic

– 'gl': Galician

– 'gv': Manx

– 'ha': Hausa

– 'haw': Hawaiian

– 'he': Hebrew

– 'ho': Hiri Motu

– 'hr': Croatian

– 'hsb': Upper Sorbian

– 'ht': Haitian

– 'hu': Hungarian

– 'ia': Interlingua

– 'id': Indonesian

– 'ie': Interlingue

– 'ik': Inupiaq

– 'io': Ido

– 'is': Icelandic

– 'it': Italian

– 'ja': Japanese

– 'jv': Javanese

– 'ki': Kikuyu

– 'kj': Kuanyama

– 'kl': Kalaallisut

– 'ko': Korean

– 'ku-tr': Kurdish

– 'kum': Kumyk

– 'kw': Cornish

– 'kwm': Kwambi

– 'la': Latin

– 'lb': Luxembourgish

– 'lez': Lezghian

– 'lg': Ganda

– 'li': Limburgan

– 'ln': Lingala

– 'lt': Lithuanian

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

108

Pybricks Modules and Examples Version v3.0.0-rc.1

height
Gets the height of the font.

text_width(text)
Gets the width of the text when the text is drawn using this font.

Parameters text (str) – The text.

– 'lv': Latvian

– 'mg': Malagasy

– 'mh': Marshallese

– 'mi': Maori

– 'mk': Macedonian

– 'mn-mn': Mongolian

– 'mo': Moldavian

– 'ms': Malay

– 'mt': Maltese

– 'na': Nauru

– 'nb': Norwegian Bokmål

– 'nds': Low German

– 'ng': Ndonga

– 'nl': Dutch

– 'nn': Norwegian Nynorsk

– 'no': Norwegian

– 'nr': South Ndebele

– 'nso': Northern Sotho

– 'nv': Navajo

– 'ny': Chichewa

– 'oc': Occitan

– 'om': Oromo

– 'os': Ossetian

– 'pap-an': Papiamento, Netherlands Antilles

– 'pap-aw': Papiamento, Aruba

– 'pl': Polish

– 'pt': Portuguese

– 'qu': Quechua

– 'quz': Cusco Quechua

– 'rm': Romansh

– 'rn': Rundi

– 'ro': Romanian

– 'ru': Russian

– 'rw': Kinyarwanda

– 'sc': Sardinian

– 'sco': Scots

– 'se': Northern Sami

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

109

Pybricks Modules and Examples Version v3.0.0-rc.1

Returns The width in pixels.

Return type int

text_height(text)
Gets the height of the text when the text is drawn using this font.

Parameters text (str) – The text.

– 'sel': Selkup

– 'sg': Sango

– 'sk': Slovak

– 'sl': Slovenian

– 'sm': Samoan

– 'sma': Southern Sami

– 'smj': Lule Sami

– 'smn': Inari Sami

– 'sms': Skolt Sami

– 'sn': Shona

– 'so': Somali

– 'sq': Albanian

– 'sr': Serbian

– 'ss': Swati

– 'st': Southern Sotho

– 'su': Sundanese

– 'sv': Swedish

– 'sw': Swahili

– 'tk': Turkmen

– 'tl': Tagalog

– 'tn': Tswana

– 'to': Tonga

– 'tr': Turkish

– 'ts': Tsonga

– 'ty': Tahitian

– 'uk': Ukrainian

– 'uz': Uzbek

– 'vo': Volapük

– 'vot': Votic

– 'wa': Walloon

– 'wen': Sorbian

– 'wo': Wolof

– 'xh': Xhosa

– 'yap': Yapese

– 'yi': Yiddish

– 'za': Zhuang

– 'zh-cn': Chinese, China

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

110

Pybricks Modules and Examples Version v3.0.0-rc.1

Returns The height in pixels.

Return type int

Exploring more fonts

Behind the scenes, Pybricks uses Fontconfig for fonts. The Fontconfig command line tools can be used to
explore available fonts in more detail. To do so, go to the ev3dev device browser, right click on your EV3 brick,
and click Open SSH Terminal. Then you can enter one of these commands:

List available font families.
fc-list :scalable=false family
Perform lookup similar to Font.DEFAULT
fc-match :scalable=false:dpi=119:family=Lucida:size=12
Perform lookup similar to Font(size=24,lang=zh-cn)
fc-match :scalable=false:dpi=119:size=24:lang=zh-cn

Pybricks only allows the use of bitmap fonts (scalable=false) and the screen on the EV3 has 119 pixels
per inch (dpi=119).

9.1.4 Image Manipulation

Instead of drawing directly on the EV3 screen, you can make and interact with image files using the Image class
given below.

class Image(source, sub=False)
Object representing a graphics image. This can either be an in-memory copy of an image or the image displayed
on a screen.

Parameters

• source (str or Image) – The source of the image.

If source is a string, then the image will be loaded from the file path given by the string.
Only .png files are supported. As a special case, if the string is _screen_, the image will
be configured to draw directly on the screen.

If an Image is given, the new object will contain a copy of the source image object.

• sub (bool) – If sub is True, then the image object will act as a sub-image of the source
image (this only works if the type of source is Image and not when it is a str).

Additional keyword arguments x1, y1, x2, y2 are needed when sub=True. These specify
the top-left and bottom-right coordinates in the source image that will be used as the
bounds for the sub-image.

static empty(width=<screen width>, height=<screen height>)
Creates a new empty Image object.

Parameters

• width (int) – The width of the image in pixels.

• height (int) – The height of the image in pixels.

Returns A new image with all pixels set to Color.WHITE.

– 'zh-sg': Chinese, Singapore

– 'zh-tw': Chinese, Taiwan

– 'zu': Zulu

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

111

https://www.freedesktop.org/wiki/Software/fontconfig/

Pybricks Modules and Examples Version v3.0.0-rc.1

Return type Image

Raises

• TypeError – width or height is not a number.

• ValueError – width or height is less than 1.

• RuntimeError – There was a problem allocating a new image.

Drawing text

There are two ways to draw text on images. draw_text() lets text be placed precisely on the image or
print() can be used to automatically print text on a new line.

draw_text(x, y, text, text_color=Color(h=0, s=0, v=10), background_color=None)
Draws text on this image.

The most recent font set using set_font() will be used or Font.DEFAULT if no font has been set yet.

Parameters

• x (int) – The x-axis value where the left side of the text will start.

• y (int) – The y-axis value where the top of the text will start.

• text (str) – The text to draw.

• text_color (Color) – The color used for drawing the text.

• background_color (Color) – The color used to fill the rectangle behind the text or
None for transparent background.

print(*args, sep=' ', end='\n')
Prints a line of text on this image.

This method works like the builtin print() function, but it writes on this image instead.

You can set the font using set_font(). If no font has been set, Font.DEFAULT will be used. The
text is always printed used black text with a white background.

Unlike the builtin print(), the text does not wrap if it is too wide to fit on this image. It just gets cut
off. But if the text would go off of the bottom of this image, the entire image is scrolled up and the text is
printed in the new blank area at the bottom of this image.

Parameters

• * (object) – Zero or more objects to print.

• sep (str) – Separator that will be placed between each object that is printed.

• end (str) – End of line that will be printed after the last object.

set_font(font)
Sets the font used for writing on this image.

The font is used for both draw_text() and print().

Parameters font (Font) – The font to use.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

112

Pybricks Modules and Examples Version v3.0.0-rc.1

Drawing images

A copy of another image can be drawn on an image. Also consider using sub-images to copy part of an image.

draw_image(x, y, source, transparent=None)
Draws the source image on this image.

Parameters

• x (int) – The x-axis value where the left side of the image will start.

• y (int) – The y-axis value where the top of the image will start.

• source (Image or str) – The source Image. If the argument is a string, then the
source image is loaded from file.

• transparent (Color) – The color of image to treat as transparent or None for no
transparency.

Drawing shapes

These are the methods to draw basic shapes, including points, lines, rectangles and circles.

draw_pixel(x, y, color=Color(h=0, s=0, v=10))
Draws a single pixel on this image.

Parameters

• x (int) – The x coordinate of the pixel.

• y (int) – The y coordinate of the pixel.

• color (Color) – The color of the pixel.

draw_line(x1, y1, x2, y2, width=1, color=Color(h=0, s=0, v=10))
Draws a line on this image.

Parameters

• x1 (int) – The x coordinate of the starting point of the line.

• y1 (int) – The y coordinate of the starting point of the line.

• x2 (int) – The x coordinate of the ending point of the line.

• y2 (int) – The y coordinate of the ending point of the line.

• width (int) – The width of the line in pixels.

• color (Color) – The color of the line.

draw_box(x1, y1, x2, y2, r=0, fill=False, color=Color(h=0, s=0, v=10))
Draws a box on this image.

Parameters

• x1 (int) – The x coordinate of the left side of the box.

• y1 (int) – The y coordinate of the top of the box.

• x2 (int) – The x coordinate of the right side of the box.

• y2 (int) – The y coordinate of the bottom of the box.

• r (int) – The radius of the corners of the box.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

113

Pybricks Modules and Examples Version v3.0.0-rc.1

• fill (bool) – If True, the box will be filled with color, otherwise only the outline of
the box will be drawn.

• color (Color) – The color of the box.

draw_circle(x, y, r, fill=False, color=Color(h=0, s=0, v=10))
Draws a circle on this image.

Parameters

• x (int) – The x coordinate of the center of the circle.

• y (int) – The y coordinate of the center of the circle.

• r (int) – The radius of the circle.

• fill (bool) – If True, the circle will be filled with color, otherwise only the circum-
ference will be drawn.

• color (Color) – The color of the circle.

Image properties

width
Gets the width of this image in pixels.

height
Gets the height of this image in pixels.

Replacing the entire image

clear()
Clears this image. All pixels on this image will be set to Color.WHITE.

load_image(source)
Clears this image, then draws the source image centered in this image.

Parameters source (Image or str) – The source Image. If the argument is a string, then
the source image is loaded from file.

Saving the image

save(filename)
Saves this image as a .png file.

Parameters filename (str) – The path to the file to be saved.

Raises

• TypeError – filename is not a string.

• OSError – There was a problem saving the file.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

114

Pybricks Modules and Examples Version v3.0.0-rc.1

Available languages for fonts

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

115

CHAPTER

TEN

MESSAGING – MESSAGING

An EV3 Brick can send information to another EV3 Brick using Bluetooth. This page shows you how to connect
multiple bricks and how to write scripts to send messages between them.

10.1 Pairing two EV3 Bricks

Before two EV3 bricks can exchange messages, they must be paired. You’ll need to do this only the first time. First,
activate bluetooth on all EV3 bricks as shown in Figure 10.1.

Figure 10.1: Turn on Bluetooth and make Bluetooth visible.

Now you can make one EV3 Brick search for the other and pair with it, as shown in Figure 10.2.

Once they are paired, do not click connect in the menu that appears. The connection will be made when you run your
programs, as described below.

Figure 10.2: Pairing one EV3 Brick to another EV3 Brick.

When you scan for Bluetooth devices, you’ll see a list of device names. By default, all EV3 Bricks are named ev3dev.
Click here to learn how to change that name. This makes it easy to tell them apart.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

116

https://pybricks.com/install/mindstorms-ev3/beyond-micropython

Pybricks Modules and Examples Version v3.0.0-rc.1

Repeat the steps in Figure 10.2 if you want to pair more than two EV3 Bricks.

10.2 Server and Client

A wireless network consists of EV3 Bricks acting as servers or clients. A example with one server and one client is
shown in Figure 10.3. Messages can be sent in both ways: the server can send a message to the client, and the client
can send a message to the server.

Figure 10.3: An example network with one server and one clients.

The only difference between the client and the server is which one initiates the connection at the beginning of the
program:

• The server must always be started first. It uses the BluetoothMailboxServer class. Then it waits for
clients using the wait_for_connection method.

• The client uses the BluetoothMailboxClient class. It connects to the server using the connectmethod.

• After that, sending and receiving messages is done in the same way on both EV3 Bricks.

class BluetoothMailboxServer
Object that represents a Bluetooth connection from one or more remote EV3s.

The remote EV3s can either be running MicroPython or the standard EV3 firmware.

A “server” waits for a “client” to connect to it.

wait_for_connection(count=1)
Waits for a BluetoothMailboxClient on a remote device to connect.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

117

Pybricks Modules and Examples Version v3.0.0-rc.1

Parameters count (int) – The number of remote connections to wait for.

Raises OSError – There was a problem establishing the connection.

close()
Closes all connections.

class BluetoothMailboxClient
Object that represents a Bluetooth connection to one or more remote EV3s.

The remote EV3s can either be running MicroPython or the standard EV3 firmware.

A “client” initiates a connection to a waiting “server”.

connect(brick)
Connects to an BluetoothMailboxServer on another device.

The remote device must be paired and waiting for a connection. See BluetoothMailboxServer.
wait_for_connection().

Parameters brick (str) – The name or Bluetooth address of the remote EV3 to connect to.

Raises OSError – There was a problem establishing the connection.

server_close()
Closes all connections.

10.3 Mailboxes

Mailboxes are used to send data to and from other EV3 Bricks.

A Mailbox has a name, similar to the “subject” of an email. If two EV3 Bricks have a Mailbox with the same name,
they can send messages between them. Each EV3 Brick can read its own Mailbox, and send messages to the Mailbox
on the other EV3 Brick.

Depending on the type of messages you would like to exchange (bytes, booleans, numbers, or text), you can choose
one of the Mailboxes below.

class Mailbox(name, connection, encode=None, decode=None)
Object that represents a mailbox containing data.

You can read data that is delivered by other EV3 bricks, or send data to other bricks that have the same mailbox.

By default, the mailbox reads and send only bytes. To send other data, you can provide an encode function
that encodes your Python object into bytes, and a decode function to convert bytes back to a Python object.

Parameters

• name (str) – The name of this mailbox.

• connection – A connection object such as BluetoothMailboxClient.

• encode (callable) – Function that encodes a Python object to bytes.

• decode (callable) – Function that creates a new Python object from bytes.

read()
Gets the current value of the mailbox.

Returns The current value or None if the mailbox is empty.

send(value, brick=None)
Sends a value to this mailbox on connected devices.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

118

Pybricks Modules and Examples Version v3.0.0-rc.1

Parameters

• value – The value that will be delivered to the mailbox.

• brick (str) – The name or Bluetooth address of the brick or None to to broadcast to
all connected devices.

Raises OSError – There is a problem with the connection.

wait()
Waits for the mailbox to be updated by remote device.

wait_new()
Waits for a new value to be delivered to the mailbox that is not equal to the current value in the mailbox.

Returns The new value.

class LogicMailbox(name, connection)
Object that represents a mailbox containing boolean data.

This works just like a regular Mailbox, but values must be True or False.

This is compatible with the “logic” mailbox type in EV3-G.

Parameters

• name (str) – The name of this mailbox.

• connection – A connection object such as BluetoothMailboxClient.

class NumericMailbox(name, connection)
Object that represents a mailbox containing numeric data.

This works just like a regular Mailbox, but values must be a number, such as 15 or 12.345

This is compatible with the “numeric” mailbox type in EV3-G.

Parameters

• name (str) – The name of this mailbox.

• connection – A connection object such as BluetoothMailboxClient.

class TextMailbox(name, connection)
Object that represents a mailbox containing text data.

This works just like a regular Mailbox, but data must be a string, such as 'hello!' or 'My name is
EV3'.

This is compatible with the “text” mailbox type in EV3-G.

Parameters

• name (str) – The name of this mailbox.

• connection – A connection object such as BluetoothMailboxClient.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

119

Pybricks Modules and Examples Version v3.0.0-rc.1

10.4 Examples

EV3 Bluetooth Server

This is the full version of the excerpt shown in Figure 10.3.

#!/usr/bin/env pybricks-micropython

Before running this program, make sure the client and server EV3 bricks are
paired using Bluetooth, but do NOT connect them. The program will take care
of establishing the connection.

The server must be started before the client!

from pybricks.messaging import BluetoothMailboxServer, TextMailbox

server = BluetoothMailboxServer()
mbox = TextMailbox('greeting', server)

The server must be started before the client!
print('waiting for connection...')
server.wait_for_connection()
print('connected!')

In this program, the server waits for the client to send the first message
and then sends a reply.
mbox.wait()
print(mbox.read())
mbox.send('hello to you!')

EV3 Bluetooth Client

This is the full version of the excerpt shown in Figure 10.3.

#!/usr/bin/env pybricks-micropython

Before running this program, make sure the client and server EV3 bricks are
paired using Bluetooth, but do NOT connect them. The program will take care
of establishing the connection.

The server must be started before the client!

from pybricks.messaging import BluetoothMailboxClient, TextMailbox

This is the name of the remote EV3 or PC we are connecting to.
SERVER = 'ev3dev'

client = BluetoothMailboxClient()
mbox = TextMailbox('greeting', client)

print('establishing connection...')
client.connect(SERVER)
print('connected!')

In this program, the client sends the first message and then waits for the
server to reply.
mbox.send('hello!')
mbox.wait()

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

120

Pybricks Modules and Examples Version v3.0.0-rc.1

(continued from previous page)

print(mbox.read())

10.5 Making bigger networks

The classes in this module are not limited to just two EV3 Bricks. for example, you can add more clients to your
network. An example with pseudo-code is shown in Figure 10.4.

Figure 10.4: An example network with one server and two clients.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

121

CHAPTER

ELEVEN

SIGNALS AND UNITS

Many commands allow you to specify arguments in terms of well-known physical quantities. This page gives an
overview of each quantity and its unit.

11.1 Time

11.1.1 time: ms

All time and duration values are measured in milliseconds (ms).

For example, the duration of motion with run_time, and the duration of wait are specified in milliseconds.

11.2 Angles and angular motion

11.2.1 angle: deg

All angles are measured in degrees (deg). One full rotation corresponds to 360 degrees.

For example, the angle values of a Motor or the GyroSensor are expressed in degrees.

11.2.2 rotational speed: deg/s

Rotational speed, or angular velocity describes how fast something rotates, expressed as the number of degrees per
second (deg/s).

For example, the rotational speed values of a Motor or the GyroSensor are expressed in degrees per second.

While we recommend working with degrees per second in your programs, you can use the following table to convert
between commonly used units.

deg/s rpm
1 deg/s = 1 1/6=0.167
1 rpm = 6 1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

122

Pybricks Modules and Examples Version v3.0.0-rc.1

11.2.3 rotational acceleration: deg/s/s

Rotational acceleration, or angular acceleration describes how fast the rotational speed changes. This is expressed
as the change of the number of degrees per second, during one second (deg/s/s). This is also commonly written as
𝑑𝑒𝑔/𝑠2.

For example, you can adjust the rotational acceleration setting of a Motor to change how smoothly or how quickly it
reaches the constant speed set point.

11.3 Distance and linear motion

11.3.1 distance: mm

Distances are expressed in millimeters (mm) whenever possible.

For example, the distance value of the UltrasonicSensor is measured in millimeters.

While we recommend working with millimeters in your programs, you can use the following table to convert between
commonly used units.

mm cm inch
1 mm = 1 0.1 0.0394
1 cm = 10 1 0.394
1 inch = 25.4 2.54 1

11.3.2 dimension: mm

Dimensions are expressed in millimeters (mm), just like distances.

For example, the diameter of a wheel is measured in millimeters.

11.3.3 speed: mm/s

Linear speeds are expressed as millimeters per second (mm/s).

For example, the speed of a robotic vehicle is expressed in mm/s.

11.3.4 linear acceleration: mm/s/s

Linear acceleration describes how fast the speed changes. This is expressed as the change of the millimeters per
second, during one second (deg/s/s). This is also commonly written as 𝑚𝑚/𝑠2.

For example, you can adjust the acceleration setting of a DriveBase to change how smoothly or how quickly it
reaches the constant speed set point.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

123

Pybricks Modules and Examples Version v3.0.0-rc.1

11.3.5 linear acceleration: m/s/s

As above, but expressed in meters per second squared: 𝑚/𝑠2. This is a more practical unit for large values such as
those given by an accelerometer.

11.4 Approximate and relative units

11.4.1 percentage: %

Some signals do not have specific units. They range from a minimum (0%) to a maximum (100%). Specifics type of
percentages are relative distances or brightness.

Another example is the sound volume, which ranges from 0% (silent) to 100% (loudest).

11.4.2 relative distance: %

Some distance measurements do not provide an accurate value with a specific unit, but they range from very close
(0%) to very far (100%). These are referred to as relative distances.

For example, the distance value of the InfraredSensor is a relative distance.

11.4.3 brightness: %

The perceived brightness of a light is expressed as a percentage. It is 0% when the light is off and 100% when the light
is fully on. When you choose 50%, this means that the light is perceived as approximately half as bright to the human
eye.

11.5 Force and torque

11.5.1 force: N

Force values are expressed in newtons (N).

While we recommend working with newtons in your programs, you can use the following table to convert to and from
other units.

mN N lbf
1 mN = 1 0.001 2.248 · 10−4

1 N = 1000 1 0.2248
1 lbf = 4448 4.448 1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

124

Pybricks Modules and Examples Version v3.0.0-rc.1

11.5.2 torque: mNm

Torque values are expressed in millinewtonmeter (mNm) unless stated otherwise.

11.6 Electricity

11.6.1 voltage: mV

Voltages are expressed in millivolt (mV).

For example, you can check the voltage of the battery.

11.6.2 current: mA

Electrical currents are expressed in milliampere (mA).

For example, you can check the current supplied by the battery.

11.6.3 energy: J

Stored energy or energy consumption can be expressed in Joules (J).

11.6.4 power: mW

Power is the rate at which energy is stored or consumed. It is expressed in milliwatt (mW).

11.7 Ambient environment

11.7.1 frequency: Hz

Sound frequencies are expressed in Hertz (Hz).

For example, you can choose the frequency of a beep to change the pitch.

11.7.2 temperature: °C

Temperature is measured in degrees Celcius (°C). To convert to degrees Fahrenheit (°F) or Kelvin (K), you can use the
following conversion formulas:

∘𝐹 = ∘𝐶 · 9
5 + 32.

𝐾 = ∘𝐶 + 273.15.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

125

Pybricks Modules and Examples Version v3.0.0-rc.1

11.7.3 hue: deg

Hue of a color (0-359 degrees).

TODO: diagram

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

126

CHAPTER

TWELVE

MORE ABOUT MOTORS

12.1 The Control Class

The Motor class uses PID control to accurately track your commanded target angles. Similarly, the DriveBase
class uses two of such controllers: one to control the heading and one to control the traveled distance.

You can change the control settings through the following attributes, which are instances of the Control class given
below.:

• Motor.control

• DriveBase.heading_control

• DriveBase.distance_control

You can only change the settings while the controller is stopped. For example, you can set the settings at the beginning
of your program. Alternatively, first call stop() to make your Motor or DriveBase stop, and then change the
settings.

class Control
Class to interact with PID controller and settings.

scale
Scaling factor between the controlled integer variable and the physical output. For example, for a single
motor this is the number of encoder pulses per degree of rotation.

Status

done()
Checks if an ongoing command or maneuver is done.

Returns True if the command is done, False if not.

Return type bool

stalled()
Checks if the controller is currently stalled.

A controller is stalled when it cannot reach the target speed or position, even with the maximum actuation
signal.

Returns True if the controller is stalled, False if not.

Return type bool

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

127

Pybricks Modules and Examples Version v3.0.0-rc.1

load()
Gets the load acting on the Motor or DriveBase.

This value is determined from the feedback torque that is needed to track the speed or position command
given by the user.

When coasting, braking, or controlling the duty cycle manually, the load cannot be estimated in this way.
Then this method returns zero.

Returns The load torque. It returns 0 if control is not active.

Return type torque: mNm

Settings

limits(speed, acceleration, duty, torque)
Configures the maximum speed, acceleration, duty, and torque.

If no arguments are given, this will return the current values.

Parameters

• speed (rotational speed: deg/s or speed: mm/s) – Maximum speed. All speed commands
will be capped to this value.

• acceleration (rotational acceleration: deg/s/s or linear acceleration: mm/s/s) – Max-
imum acceleration.

• duty (percentage: %) – Maximum duty cycle during control.

• torque (torque: mNm) – Maximum feedback torque during control.

pid(kp, ki, kd, integral_range, integral_rate, feed_forward)
Gets or sets the PID values for position and speed control.

If no arguments are given, this will return the current values.

Parameters

• kp (int) – Proportional position control constant. It is the feedback torque per degree of
error: 𝜇Nm/deg.

• ki (int) – Integral position control constant. It is the feedback torque per accumulated
degree of error: 𝜇Nm/(deg s).

• kd (int) – Derivative position (or proportional speed) control constant. It is the feedback
torque per unit of speed: 𝜇Nm/(deg/s).

• integral_range (angle: deg or distance: mm) – Region around the target angle or
distance, in which integral control errors are accumulated.

• integral_rate (rotational speed: deg/s or speed: mm/s) – Maximum rate at which
the error integral is allowed to grow.

• feed_forward (percentage: %) – This adds a feed forward signal to the PID feedback
signal, in the direction of the speed reference. This value is expressed as a percentage of
the absolute maximum duty cycle.

target_tolerances(speed, position)
Gets or sets the tolerances that say when a maneuver is done.

If no arguments are given, this will return the current values.

Parameters

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

128

Pybricks Modules and Examples Version v3.0.0-rc.1

• speed (rotational speed: deg/s or speed: mm/s) – Allowed deviation from zero speed
before motion is considered complete.

• position (angle: deg or distance: mm) – Allowed deviation from the target before
motion is considered complete.

stall_tolerances(speed, time)
Gets or sets stalling tolerances.

If no arguments are given, this will return the current values.

Parameters

• speed (rotational speed: deg/s or speed: mm/s) – If the controller cannot reach this speed
for some time even with maximum actuation, it is stalled.

• time (time: ms) – How long the controller has to be below this minimum speed before
we say it is stalled.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

129

PYTHON MODULE INDEX

p
pybricks.ev3devices, 56
pybricks.hubs, 2
pybricks.iodevices, 69
pybricks.media, 93
pybricks.media.ev3dev, 93
pybricks.messaging, 116
pybricks.nxtdevices, 63
pybricks.parameters, 81
pybricks.pupdevices, 21
pybricks.robotics, 90
pybricks.tools, 86

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

130

INDEX

A
A (Port attribute), 84
active() (AnalogSensor method), 75
ambient() (ColorDistanceSensor method), 36
ambient() (ColorSensor method), 42, 59, 64
ambient() (LightSensor method), 64
AnalogSensor (class in pybricks.iodevices), 75
angle() (DriveBase method), 91
angle() (GyroSensor method), 62
angle() (Motor method), 24, 57
animate() (CityHub.light method), 5
animate() (MoveHub.light method), 2
animate() (TechnicHub.light method), 8

B
B (Port attribute), 84
BEACON (Button attribute), 81
beacon() (InfraredSensor method), 60
beep() (EV3Brick.speaker method), 11
BLACK (Color attribute), 82
blink() (CityHub.light method), 4
blink() (MoveHub.light method), 2
blink() (TechnicHub.light method), 7
BLUE (Color attribute), 82
BluetoothMailboxClient (class in py-

bricks.messaging), 118
BluetoothMailboxServer (class in py-

bricks.messaging), 117
BRAKE (Stop attribute), 84
brake() (Motor method), 25, 57
Button (built-in class), 81
buttons() (InfraredSensor method), 60

C
C (Port attribute), 84
CENTER (Button attribute), 81
CityHub (class in pybricks.hubs), 4
clear() (EV3Brick.screen method), 14
clear() (Image method), 114
clear() (UARTDevice method), 74
CLOCKWISE (Direction attribute), 84
close() (BluetoothMailboxServer method), 118

COAST (Stop attribute), 84
Color (class in pybricks.parameters), 81
color() (ColorDistanceSensor method), 35
color() (ColorSensor method), 42, 59, 64
ColorDistanceSensor (class in py-

bricks.pupdevices), 35
ColorSensor (class in pybricks.ev3devices), 59
ColorSensor (class in pybricks.nxtdevices), 64
ColorSensor (class in pybricks.pupdevices), 42
connect() (BluetoothMailboxClient method), 118
Control (class in pybricks._common), 127
control (Motor attribute), 58
Control.scale (in module pybricks._common), 127
conversion() (VernierAdapter method), 68
count() (InfraredSensor method), 34
COUNTERCLOCKWISE (Direction attribute), 84
current() (CityHub.battery method), 5
current() (EV3Brick.battery method), 16
current() (MoveHub.battery method), 3
current() (TechnicHub.battery method), 8
CYAN (Color attribute), 82

D
D (Port attribute), 84
DataLog (class in pybricks.tools), 86
dc() (Motor method), 26, 58
DCMotor (class in pybricks.pupdevices), 21
DEFAULT (Font attribute), 107
detectable_colors() (ColorDistanceSensor

method), 36
detectable_colors() (ColorSensor method), 43
Direction (built-in class), 84
distance() (ColorDistanceSensor method), 36
distance() (DriveBase method), 91
distance() (ForceSensor method), 49
distance() (InfraredSensor method), 34, 60
distance() (UltrasonicSensor method), 47, 61, 65
distance_control (DriveBase attribute), 92
done() (Control method), 127
DOWN (Button attribute), 81
draw_box() (EV3Brick.screen method), 15
draw_box() (Image method), 113

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

131

Pybricks Modules and Examples Version v3.0.0-rc.1

draw_circle() (EV3Brick.screen method), 16
draw_circle() (Image method), 114
draw_image() (EV3Brick.screen method), 15
draw_image() (Image method), 113
draw_line() (EV3Brick.screen method), 15
draw_line() (Image method), 113
draw_pixel() (EV3Brick.screen method), 15
draw_pixel() (Image method), 113
draw_text() (EV3Brick.screen method), 14
draw_text() (Image method), 112
drive() (DriveBase method), 91
DriveBase (class in pybricks.robotics), 90

E
E (Port attribute), 84
empty() (Image static method), 111
EnergyMeter (class in pybricks.nxtdevices), 67
EV3Brick (class in pybricks.hubs), 10
Ev3devSensor (class in pybricks.iodevices), 77

F
F (Port attribute), 84
family (Font attribute), 107
Font (class in pybricks.media.ev3dev), 106
force() (ForceSensor method), 49
ForceSensor (class in pybricks.pupdevices), 49

G
GRAY (Color attribute), 82
GREEN (Color attribute), 82
GyroSensor (class in pybricks.ev3devices), 62

H
heading_control (DriveBase attribute), 92
height (EV3Brick.screen attribute), 16
height (Font attribute), 108
height (Image attribute), 114
HOLD (Stop attribute), 84
hold() (Motor method), 25, 57
hsv() (ColorDistanceSensor method), 36
hsv() (ColorSensor method), 43

I
I2CDevice (class in pybricks.iodevices), 71
Image (class in pybricks.media.ev3dev), 111
ImageFile (class in pybricks.media.ev3dev), 93
ImageFile.ACCEPT (in module py-

bricks.media.ev3dev), 93
ImageFile.ANGRY (in module py-

bricks.media.ev3dev), 95
ImageFile.AWAKE (in module py-

bricks.media.ev3dev), 95
ImageFile.BACKWARD (in module py-

bricks.media.ev3dev), 93

ImageFile.BOTTOM_LEFT (in module py-
bricks.media.ev3dev), 95

ImageFile.BOTTOM_RIGHT (in module py-
bricks.media.ev3dev), 95

ImageFile.CRAZY_1 (in module py-
bricks.media.ev3dev), 95

ImageFile.CRAZY_2 (in module py-
bricks.media.ev3dev), 95

ImageFile.DECLINE (in module py-
bricks.media.ev3dev), 93

ImageFile.DIZZY (in module py-
bricks.media.ev3dev), 96

ImageFile.DOWN (in module pybricks.media.ev3dev),
96

ImageFile.EV3 (in module pybricks.media.ev3dev),
95

ImageFile.EV3_ICON (in module py-
bricks.media.ev3dev), 95

ImageFile.EVIL (in module pybricks.media.ev3dev),
96

ImageFile.FORWARD (in module py-
bricks.media.ev3dev), 93

ImageFile.KNOCKED_OUT (in module py-
bricks.media.ev3dev), 96

ImageFile.LEFT (in module pybricks.media.ev3dev),
93

ImageFile.MIDDLE_LEFT (in module py-
bricks.media.ev3dev), 96

ImageFile.MIDDLE_RIGHT (in module py-
bricks.media.ev3dev), 96

ImageFile.NEUTRAL (in module py-
bricks.media.ev3dev), 96

ImageFile.NO_GO (in module py-
bricks.media.ev3dev), 94

ImageFile.PINCHED_LEFT (in module py-
bricks.media.ev3dev), 96

ImageFile.PINCHED_MIDDLE (in module py-
bricks.media.ev3dev), 96

ImageFile.PINCHED_RIGHT (in module py-
bricks.media.ev3dev), 97

ImageFile.QUESTION_MARK (in module py-
bricks.media.ev3dev), 94

ImageFile.RIGHT (in module py-
bricks.media.ev3dev), 94

ImageFile.SLEEPING (in module py-
bricks.media.ev3dev), 97

ImageFile.STOP_1 (in module py-
bricks.media.ev3dev), 94

ImageFile.STOP_2 (in module py-
bricks.media.ev3dev), 94

ImageFile.TARGET (in module py-
bricks.media.ev3dev), 95

ImageFile.THUMBS_DOWN (in module py-
bricks.media.ev3dev), 94

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

132

Pybricks Modules and Examples Version v3.0.0-rc.1

ImageFile.THUMBS_UP (in module py-
bricks.media.ev3dev), 94

ImageFile.TIRED_LEFT (in module py-
bricks.media.ev3dev), 97

ImageFile.TIRED_MIDDLE (in module py-
bricks.media.ev3dev), 97

ImageFile.TIRED_RIGHT (in module py-
bricks.media.ev3dev), 97

ImageFile.UP (in module pybricks.media.ev3dev), 97
ImageFile.WARNING (in module py-

bricks.media.ev3dev), 94
ImageFile.WINKING (in module py-

bricks.media.ev3dev), 97
info() (PUPDevice method), 69
InfraredSensor (class in pybricks.ev3devices), 60
InfraredSensor (class in pybricks.pupdevices), 34
input() (EnergyMeter method), 67
intensity() (SoundSensor method), 66

K
keypad() (InfraredSensor method), 61

L
LEFT (Button attribute), 81
LEFT_DOWN (Button attribute), 81
LEFT_MINUS (Button attribute), 81
LEFT_PLUS (Button attribute), 81
LEFT_UP (Button attribute), 81
Light (class in pybricks.pupdevices), 51
LightSensor (class in pybricks.nxtdevices), 64
limits() (Control method), 128
load() (Control method), 127
load_image() (EV3Brick.screen method), 15
load_image() (Image method), 114
log() (DataLog method), 86
LogicMailbox (class in pybricks.messaging), 119
LUMPDevice (class in pybricks.iodevices), 75

M
MAGENTA (Color attribute), 82
Mailbox (class in pybricks.messaging), 118
module

pybricks.ev3devices, 56
pybricks.hubs, 2
pybricks.iodevices, 69
pybricks.media, 93
pybricks.media.ev3dev, 93
pybricks.messaging, 116
pybricks.nxtdevices, 63
pybricks.parameters, 81
pybricks.pupdevices, 21
pybricks.robotics, 90
pybricks.tools, 86

Motor (class in pybricks.pupdevices), 23

MoveHub (class in pybricks.hubs), 2

N
NONE (Color attribute), 82
NumericMailbox (class in pybricks.messaging), 119

O
off() (CityHub.light method), 4
off() (ColorDistanceSensor.light method), 36
off() (ColorSensor.light method), 65
off() (ColorSensor.lights method), 43
off() (EV3Brick.light method), 11
off() (Light method), 51
off() (MoveHub.light method), 2
off() (TechnicHub.light method), 7
off() (UltrasonicSensor.lights method), 47
on() (CityHub.light method), 4
on() (ColorDistanceSensor.light method), 36
on() (ColorSensor.light method), 65
on() (ColorSensor.lights method), 43
on() (EV3Brick.light method), 11
on() (Light method), 51
on() (MoveHub.light method), 2
on() (TechnicHub.light method), 7
on() (UltrasonicSensor.lights method), 47
ORANGE (Color attribute), 82
output() (EnergyMeter method), 67

P
passive() (AnalogSensor method), 75
pause() (StopWatch method), 89
pid() (Control method), 128
play_file() (EV3Brick.speaker method), 11
play_notes() (EV3Brick.speaker method), 11
Port (built-in class), 84
port_index (Ev3devSensor attribute), 77
presence() (UltrasonicSensor method), 47, 61
pressed() (EV3Brick.buttons method), 10
pressed() (ForceSensor method), 49
pressed() (TouchSensor method), 59, 63
print() (EV3Brick.screen method), 14
print() (Image method), 112
PUPDevice (class in pybricks.iodevices), 69
pybricks.ev3devices

module, 56
pybricks.hubs

module, 2
pybricks.iodevices

module, 69
pybricks.media

module, 93
pybricks.media.ev3dev

module, 93
pybricks.messaging

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

133

Pybricks Modules and Examples Version v3.0.0-rc.1

module, 116
pybricks.nxtdevices

module, 63
pybricks.parameters

module, 81
pybricks.pupdevices

module, 21
pybricks.robotics

module, 90
pybricks.tools

module, 86

R
read() (Ev3devSensor method), 77
read() (I2CDevice method), 71
read() (LUMPDevice method), 75
read() (Mailbox method), 118
read() (PUPDevice method), 69
read() (UARTDevice method), 73
read_all() (UARTDevice method), 74
RED (Color attribute), 82
reflection() (ColorDistanceSensor method), 36
reflection() (ColorSensor method), 42, 60, 65
reflection() (InfraredSensor method), 34
reflection() (LightSensor method), 64
reset() (DriveBase method), 91
reset() (StopWatch method), 89
reset_angle() (GyroSensor method), 62
reset_angle() (Motor method), 24, 57
resistance() (AnalogSensor method), 75
resume() (StopWatch method), 89
rgb() (ColorSensor method), 60, 65
RIGHT (Button attribute), 81
RIGHT_DOWN (Button attribute), 81
RIGHT_MINUS (Button attribute), 81
RIGHT_PLUS (Button attribute), 81
RIGHT_UP (Button attribute), 81
run() (Motor method), 25, 57
run_angle() (Motor method), 25, 57
run_target() (Motor method), 25, 58
run_time() (Motor method), 25, 57
run_until_stalled() (Motor method), 26, 58

S
S1 (Port attribute), 84
S2 (Port attribute), 84
S3 (Port attribute), 84
S4 (Port attribute), 84
save() (EV3Brick.screen method), 16
save() (Image method), 114
say() (EV3Brick.speaker method), 11
send() (Mailbox method), 118
sensor_index (Ev3devSensor attribute), 77

server_close() (BluetoothMailboxClient method),
118

set_font() (EV3Brick.screen method), 15
set_font() (Image method), 112
set_speech_options() (EV3Brick.speaker

method), 11
set_volume() (EV3Brick.speaker method), 13
settings() (DriveBase method), 90
SoundFile (class in pybricks.media.ev3dev), 98
SoundFile.ACTIVATE (in module py-

bricks.media.ev3dev), 99
SoundFile.AIR_RELEASE (in module py-

bricks.media.ev3dev), 103
SoundFile.AIRBRAKE (in module py-

bricks.media.ev3dev), 103
SoundFile.ANALYZE (in module py-

bricks.media.ev3dev), 99
SoundFile.BACKING_ALERT (in module py-

bricks.media.ev3dev), 103
SoundFile.BACKWARDS (in module py-

bricks.media.ev3dev), 99
SoundFile.BLACK (in module py-

bricks.media.ev3dev), 102
SoundFile.BLUE (in module pybricks.media.ev3dev),

102
SoundFile.BOING (in module py-

bricks.media.ev3dev), 98
SoundFile.BOO (in module pybricks.media.ev3dev),

98
SoundFile.BRAVO (in module py-

bricks.media.ev3dev), 101
SoundFile.BROWN (in module py-

bricks.media.ev3dev), 102
SoundFile.CAT_PURR (in module py-

bricks.media.ev3dev), 104
SoundFile.CHEERING (in module py-

bricks.media.ev3dev), 98
SoundFile.CLICK (in module py-

bricks.media.ev3dev), 106
SoundFile.COLOR (in module py-

bricks.media.ev3dev), 99
SoundFile.CONFIRM (in module py-

bricks.media.ev3dev), 106
SoundFile.CRUNCHING (in module py-

bricks.media.ev3dev), 98
SoundFile.CRYING (in module py-

bricks.media.ev3dev), 98
SoundFile.DETECTED (in module py-

bricks.media.ev3dev), 99
SoundFile.DOG_BARK_1 (in module py-

bricks.media.ev3dev), 104
SoundFile.DOG_BARK_2 (in module py-

bricks.media.ev3dev), 104
SoundFile.DOG_GROWL (in module py-

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

134

Pybricks Modules and Examples Version v3.0.0-rc.1

bricks.media.ev3dev), 104
SoundFile.DOG_SNIFF (in module py-

bricks.media.ev3dev), 104
SoundFile.DOG_WHINE (in module py-

bricks.media.ev3dev), 104
SoundFile.DOWN (in module pybricks.media.ev3dev),

99
SoundFile.EIGHT (in module py-

bricks.media.ev3dev), 105
SoundFile.ELEPHANT_CALL (in module py-

bricks.media.ev3dev), 104
SoundFile.ERROR (in module py-

bricks.media.ev3dev), 99
SoundFile.ERROR_ALARM (in module py-

bricks.media.ev3dev), 99
SoundFile.EV3 (in module pybricks.media.ev3dev),

101
SoundFile.FANFARE (in module py-

bricks.media.ev3dev), 98
SoundFile.FANTASTIC (in module py-

bricks.media.ev3dev), 101
SoundFile.FIVE (in module pybricks.media.ev3dev),

105
SoundFile.FLASHING (in module py-

bricks.media.ev3dev), 100
SoundFile.FORWARD (in module py-

bricks.media.ev3dev), 100
SoundFile.FOUR (in module pybricks.media.ev3dev),

105
SoundFile.GAME_OVER (in module py-

bricks.media.ev3dev), 101
SoundFile.GENERAL_ALERT (in module py-

bricks.media.ev3dev), 106
SoundFile.GO (in module pybricks.media.ev3dev),

101
SoundFile.GOOD (in module pybricks.media.ev3dev),

101
SoundFile.GOOD_JOB (in module py-

bricks.media.ev3dev), 101
SoundFile.GOODBYE (in module py-

bricks.media.ev3dev), 101
SoundFile.GREEN (in module py-

bricks.media.ev3dev), 102
SoundFile.HELLO (in module py-

bricks.media.ev3dev), 101
SoundFile.HI (in module pybricks.media.ev3dev),

101
SoundFile.HORN_1 (in module py-

bricks.media.ev3dev), 103
SoundFile.HORN_2 (in module py-

bricks.media.ev3dev), 103
SoundFile.INSECT_BUZZ_1 (in module py-

bricks.media.ev3dev), 104
SoundFile.INSECT_BUZZ_2 (in module py-

bricks.media.ev3dev), 104
SoundFile.INSECT_CHIRP (in module py-

bricks.media.ev3dev), 104
SoundFile.KUNG_FU (in module py-

bricks.media.ev3dev), 98
SoundFile.LASER (in module py-

bricks.media.ev3dev), 103
SoundFile.LAUGHING_1 (in module py-

bricks.media.ev3dev), 98
SoundFile.LAUGHING_2 (in module py-

bricks.media.ev3dev), 98
SoundFile.LEFT (in module pybricks.media.ev3dev),

100
SoundFile.LEGO (in module pybricks.media.ev3dev),

101
SoundFile.MAGIC_WAND (in module py-

bricks.media.ev3dev), 98
SoundFile.MINDSTORMS (in module py-

bricks.media.ev3dev), 101
SoundFile.MORNING (in module py-

bricks.media.ev3dev), 101
SoundFile.MOTOR_IDLE (in module py-

bricks.media.ev3dev), 103
SoundFile.MOTOR_START (in module py-

bricks.media.ev3dev), 103
SoundFile.MOTOR_STOP (in module py-

bricks.media.ev3dev), 103
SoundFile.NINE (in module pybricks.media.ev3dev),

106
SoundFile.NO (in module pybricks.media.ev3dev),

101
SoundFile.OBJECT (in module py-

bricks.media.ev3dev), 100
SoundFile.OKAY (in module pybricks.media.ev3dev),

102
SoundFile.OKEY_DOKEY (in module py-

bricks.media.ev3dev), 102
SoundFile.ONE (in module pybricks.media.ev3dev),

105
SoundFile.OUCH (in module pybricks.media.ev3dev),

98
SoundFile.OVERPOWER (in module py-

bricks.media.ev3dev), 106
SoundFile.RATCHET (in module py-

bricks.media.ev3dev), 104
SoundFile.READY (in module py-

bricks.media.ev3dev), 106
SoundFile.RED (in module pybricks.media.ev3dev),

103
SoundFile.RIGHT (in module py-

bricks.media.ev3dev), 100
SoundFile.SEARCHING (in module py-

bricks.media.ev3dev), 100
SoundFile.SEVEN (in module py-

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

135

Pybricks Modules and Examples Version v3.0.0-rc.1

bricks.media.ev3dev), 105
SoundFile.SHOUTING (in module py-

bricks.media.ev3dev), 98
SoundFile.SIX (in module pybricks.media.ev3dev),

105
SoundFile.SMACK (in module py-

bricks.media.ev3dev), 99
SoundFile.SNAKE_HISS (in module py-

bricks.media.ev3dev), 105
SoundFile.SNAKE_RATTLE (in module py-

bricks.media.ev3dev), 105
SoundFile.SNEEZING (in module py-

bricks.media.ev3dev), 99
SoundFile.SNORING (in module py-

bricks.media.ev3dev), 99
SoundFile.SONAR (in module py-

bricks.media.ev3dev), 104
SoundFile.SORRY (in module py-

bricks.media.ev3dev), 102
SoundFile.SPEED_DOWN (in module py-

bricks.media.ev3dev), 102
SoundFile.SPEED_IDLE (in module py-

bricks.media.ev3dev), 102
SoundFile.SPEED_UP (in module py-

bricks.media.ev3dev), 102
SoundFile.START (in module py-

bricks.media.ev3dev), 100
SoundFile.STOP (in module pybricks.media.ev3dev),

100
SoundFile.T_REX_ROAR (in module py-

bricks.media.ev3dev), 105
SoundFile.TEN (in module pybricks.media.ev3dev),

106
SoundFile.THANK_YOU (in module py-

bricks.media.ev3dev), 102
SoundFile.THREE (in module py-

bricks.media.ev3dev), 105
SoundFile.TICK_TACK (in module py-

bricks.media.ev3dev), 104
SoundFile.TOUCH (in module py-

bricks.media.ev3dev), 100
SoundFile.TURN (in module pybricks.media.ev3dev),

100
SoundFile.TWO (in module pybricks.media.ev3dev),

105
SoundFile.UH_OH (in module py-

bricks.media.ev3dev), 99
SoundFile.UP (in module pybricks.media.ev3dev),

100
SoundFile.WHITE (in module py-

bricks.media.ev3dev), 103
SoundFile.YELLOW (in module py-

bricks.media.ev3dev), 103
SoundFile.YES (in module pybricks.media.ev3dev),

102
SoundFile.ZERO (in module pybricks.media.ev3dev),

105
SoundSensor (class in pybricks.nxtdevices), 66
speed() (GyroSensor method), 62
speed() (Motor method), 24, 57
stall_tolerances() (Control method), 129
stalled() (Control method), 127
state() (DriveBase method), 91
Stop (built-in class), 84
stop() (DriveBase method), 91
stop() (Motor method), 25, 57
StopWatch (class in pybricks.tools), 89
storage() (EnergyMeter method), 67
straight() (DriveBase method), 90
style (Font attribute), 107

T
target_tolerances() (Control method), 128
TechnicHub (built-in class), 7
temperature() (TemperatureSensor method), 66
TemperatureSensor (class in pybricks.nxtdevices),

66
text_height() (Font method), 110
text_width() (Font method), 109
TextMailbox (class in pybricks.messaging), 119
tilt() (TiltSensor method), 33
TiltSensor (class in pybricks.pupdevices), 33
time() (StopWatch method), 89
touched() (ForceSensor method), 49
TouchSensor (class in pybricks.ev3devices), 59
TouchSensor (class in pybricks.nxtdevices), 63
track_target() (Motor method), 26, 58
turn() (DriveBase method), 90

U
UARTDevice (class in pybricks.iodevices), 73
UltrasonicSensor (class in pybricks.ev3devices), 61
UltrasonicSensor (class in pybricks.nxtdevices), 65
UltrasonicSensor (class in pybricks.pupdevices),

47
UP (Button attribute), 81

V
value() (VernierAdapter method), 68
VernierAdapter (class in pybricks.nxtdevices), 67
VIOLET (Color attribute), 82
voltage() (AnalogSensor method), 75
voltage() (CityHub.battery method), 5
voltage() (EV3Brick.battery method), 16
voltage() (MoveHub.battery method), 3
voltage() (TechnicHub.battery method), 8
voltage() (VernierAdapter method), 68

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

136

Pybricks Modules and Examples Version v3.0.0-rc.1

W
wait() (in module pybricks.tools), 89
wait() (Mailbox method), 119
wait_for_connection() (BluetoothMailboxServer

method), 117
wait_new() (Mailbox method), 119
waiting() (UARTDevice method), 74
WHITE (Color attribute), 82
width (EV3Brick.screen attribute), 16
width (Font attribute), 108
width (Image attribute), 114
write() (I2CDevice method), 71
write() (PUPDevice method), 69
write() (UARTDevice method), 74

Y
YELLOW (Color attribute), 82

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

137

	hubs – Programmable Hubs
	pupdevices – Powered Up Devices
	ev3devices – EV3 Devices
	nxtdevices – NXT Devices
	iodevices – Generic I/O Devices
	parameters – Parameters and Constants
	tools – General purpose tools
	robotics – Robotics
	media – Sounds and Images
	messaging – Messaging
	Signals and Units
	More about Motors
	Python Module Index
	Index

