
Pybricks Modules and Examples
Version v3.2.0

Dec 20, 2022

TABLE OF CONTENTS

1 hubs – Built-in hub functions 4

2 pupdevices – Motors, sensors, lights 53

3 iodevices – Custom devices 96

4 parameters – Parameters and constants 100

5 tools – Timing tools 115

6 robotics – Robotics and drive bases 116

7 geometry – Geometry and algebra 121

8 Signals and Units 123

9 Built-in classes and functions 128

10 Exceptions and errors 141

11 micropython – MicroPython internals 145

12 uerrno – Error codes 148

13 uio – Input/output streams 149

14 ujson – JSON encoding and decoding 150

15 umath – Math functions 151

16 urandom – Pseudo-random numbers 156

17 uselect – Wait for events 158

18 ustruct – Pack and unpack binary data 161

19 usys – System specific functions 163

Python Module Index 165

Index 166

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

i

Pybricks Modules and Examples Version v3.2.0

Pybricks is Python coding for smart LEGO® hubs. Run MicroPython scripts directly on the hub, and get full control
of your motors and sensors.

Pybricks runs on LEGO® BOOST, City, Technic, MINDSTORMS®, and SPIKE®. You can code using Windows,
Mac, Linux, Chromebook, and Android.

Click on any device below to see its documentation. Use the menu on the left to find documentation for additional
modules. You may need to click the icon above to reveal this menu.

Note: You are viewing the stand-alone version of the documentation. To learn more about Pybricks and to start coding,
visit the Pybricks website

Note: Are you using LEGO MINDSTORMS EV3? Check out the EV3 documentation instead.

Programmable hubs

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

1

https://pybricks.com/
https://pybricks.com/
https://pybricks.com/ev3-micropython/
hubs/index.html

Pybricks Modules and Examples Version v3.2.0

Powered Up motors and sensors

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

2

pupdevices/index.html

Pybricks Modules and Examples Version v3.2.0

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

3

pupdevices/motor.html
pupdevices/dcmotor.html

CHAPTER

ONE

HUBS – BUILT-IN HUB FUNCTIONS

1.1 Move Hub

class MoveHub

LEGO® BOOST Move Hub.

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters
color (Color) – Color of the light.

light.off()

Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

4

Pybricks Modules and Examples Version v3.2.0

Parameters

• color (Color) – Color of the light.

• durations (list) – Sequence of time values of the form [on_1, off_1, on_2,
off_2, ...].

light.animate(colors, interval)
Animates the light with a sequence of colors, shown one by one for the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

Parameters

• colors (list) – Sequence of Color values.

• interval (Number, ms) – Time between color updates.

Using the IMU

imu.up()→ Side
Checks which side of the hub currently faces upward.

Returns
Side.TOP, Side.BOTTOM, Side.LEFT, Side.RIGHT, Side.FRONT or Side.BACK.

imu.acceleration()→ Tuple[int, int, int]: mm/s2

Gets the acceleration of the device.

Returns
Acceleration along all three axes.

Changed in version 3.2: Changed acceleration units from m/s2 to mm/s2.

Using the battery

battery.voltage()→ int: mV
Gets the voltage of the battery.

Returns
Battery voltage.

battery.current()→ int: mA
Gets the current supplied by the battery.

Returns
Battery current.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

5

Pybricks Modules and Examples Version v3.2.0

Button and system control

button.pressed()→ Collection[Button]
Checks which buttons are currently pressed.

Returns
Set of pressed buttons.

system.set_stop_button(button)
Sets the button or button combination that stops a running script.

Normally, the center button is used to stop a running script. You can change or disable this behavior in
order to use the button for other purposes.

Parameters
button (Button) – A button such as Button.CENTER , or a tuple of multiple buttons. Choose
None to disable the stop button altogether.

system.name()→ str
Gets the hub name. This is the name you see when connecting via Bluetooth.

Returns
The hub name.

system.storage(self, offset, write=)
system.storage(self, offset, read=)→ bytes

Reads or writes binary data to persistent storage.

This lets you store data that can be used the next time you run the program.

The data will be saved to flash memory when you turn the hub off normally. It will not be saved if the
batteries are removed while the hub is still running.

Once saved, the data will remain available even after you remove the batteries.

Parameters

• offset (int) – The offset from the start of the user storage memory, in bytes.

• read (int) – The number of bytes to read. Omit this argument when writing.

• write (bytes) – The bytes to write. Omit this argument when reading.

Returns
The bytes read if reading, otherwise None.

Raises
ValueError – If you try to read or write data outside of the allowed range.

You can store up to 128 bytes of data on this hub. The data is cleared when you update the Pybricks firmware
or if you restore the original firmware.

system.shutdown()

Stops your program and shuts the hub down.

system.reset_reason()→ int
Finds out how and why the hub (re)booted. This can be useful to diagnose some problems.

Returns

• 0 if the hub was previously powered off normally.

• 1 if the hub rebooted automatically, like after a firmware update.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

6

Pybricks Modules and Examples Version v3.2.0

• 2 if the hub previously crashed due to a watchdog timeout, which indicates a firmware
issue.

1.1.1 Status light examples

Turning the light on and off

from pybricks.hubs import MoveHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = MoveHub()

Turn the light on and off 5 times.
for i in range(5):

hub.light.on(Color.RED)
wait(1000)

hub.light.off()
wait(500)

Making the light blink

from pybricks.hubs import MoveHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = MoveHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

wait(10000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

7

Pybricks Modules and Examples Version v3.2.0

1.1.2 IMU examples

Testing which way is up

from pybricks.hubs import MoveHub
from pybricks.parameters import Color, Side
from pybricks.tools import wait

Initialize the hub.
hub = MoveHub()

Define colors for each side in a dictionary.
SIDE_COLORS = {

Side.TOP: Color.RED,
Side.BOTTOM: Color.BLUE,
Side.LEFT: Color.GREEN,
Side.RIGHT: Color.YELLOW,
Side.FRONT: Color.MAGENTA,
Side.BACK: Color.BLACK,

}

Keep updating the color based on detected up side.
while True:

Check which side of the hub is up.
up_side = hub.imu.up()

Change the color based on the side.
hub.light.on(SIDE_COLORS[up_side])

Also print the result.
print(up_side)
wait(50)

Reading acceleration

from pybricks.hubs import MoveHub
from pybricks.tools import wait

Initialize the hub.
hub = MoveHub()

Get the acceleration tuple.
print(hub.imu.acceleration())

while True:
Get individual acceleration values.
x, y, z = hub.imu.acceleration()
print(x, y, z)

Wait so we can see what we printed.
wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

8

Pybricks Modules and Examples Version v3.2.0

1.1.3 Button and system examples

Using the stop button during your program

from pybricks.hubs import MoveHub
from pybricks.parameters import Color, Button
from pybricks.tools import wait, StopWatch

Initialize the hub.
hub = MoveHub()

Disable the stop button.
hub.system.set_stop_button(None)

Check the button for 5 seconds.
watch = StopWatch()
while watch.time() < 5000:

Set light to green if pressed, else red.
if hub.button.pressed():

hub.light.on(Color.GREEN)
else:

hub.light.on(Color.RED)

Enable the stop button again.
hub.system.set_stop_button(Button.CENTER)

Now you can press the stop button as usual.
wait(5000)

Turning the hub off

from pybricks.hubs import MoveHub
from pybricks.tools import wait

Initialize the hub.
hub = MoveHub()

Say goodbye and give some time to send it.
print("Goodbye!")
wait(100)

Shut the hub down.
hub.system.shutdown()

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

9

Pybricks Modules and Examples Version v3.2.0

Making random numbers

The Move Hub does not include the urandom module. If you need random numbers in your application, you can try a
variation of the following example.

To make it work better, change the initial value of _rand to something that is truly random in your application. You
could use the IMU acceleration or a sensor value, for example.

from pybricks.hubs import MoveHub

Initialize the hub.
hub = MoveHub()

Initialize "random" seed.
_rand = hub.battery.voltage() + hub.battery.current()

Return a random integer N such that a <= N <= b.
def randint(a, b):

global _rand
_rand = 75 * _rand % 65537 # Lehmer
return _rand * (b - a + 1) // 65537 + a

Generate a few example numbers.
for i in range(5):

print(randint(0, 1000))

1.2 City Hub

class CityHub

LEGO® City Hub.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

10

Pybricks Modules and Examples Version v3.2.0

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters
color (Color) – Color of the light.

light.off()

Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

Parameters

• color (Color) – Color of the light.

• durations (list) – Sequence of time values of the form [on_1, off_1, on_2,
off_2, ...].

light.animate(colors, interval)
Animates the light with a sequence of colors, shown one by one for the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

Parameters

• colors (list) – Sequence of Color values.

• interval (Number, ms) – Time between color updates.

Using the battery

battery.voltage()→ int: mV
Gets the voltage of the battery.

Returns
Battery voltage.

battery.current()→ int: mA
Gets the current supplied by the battery.

Returns
Battery current.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

11

Pybricks Modules and Examples Version v3.2.0

Button and system control

button.pressed()→ Collection[Button]
Checks which buttons are currently pressed.

Returns
Set of pressed buttons.

system.set_stop_button(button)
Sets the button or button combination that stops a running script.

Normally, the center button is used to stop a running script. You can change or disable this behavior in
order to use the button for other purposes.

Parameters
button (Button) – A button such as Button.CENTER , or a tuple of multiple buttons. Choose
None to disable the stop button altogether.

system.name()→ str
Gets the hub name. This is the name you see when connecting via Bluetooth.

Returns
The hub name.

system.storage(self, offset, write=)
system.storage(self, offset, read=)→ bytes

Reads or writes binary data to persistent storage.

This lets you store data that can be used the next time you run the program.

The data will be saved to flash memory when you turn the hub off normally. It will not be saved if the
batteries are removed while the hub is still running.

Once saved, the data will remain available even after you remove the batteries.

Parameters

• offset (int) – The offset from the start of the user storage memory, in bytes.

• read (int) – The number of bytes to read. Omit this argument when writing.

• write (bytes) – The bytes to write. Omit this argument when reading.

Returns
The bytes read if reading, otherwise None.

Raises
ValueError – If you try to read or write data outside of the allowed range.

You can store up to 128 bytes of data on this hub. The data is cleared when you update the Pybricks firmware
or if you restore the original firmware.

system.shutdown()

Stops your program and shuts the hub down.

system.reset_reason()→ int
Finds out how and why the hub (re)booted. This can be useful to diagnose some problems.

Returns

• 0 if the hub was previously powered off normally.

• 1 if the hub rebooted automatically, like after a firmware update.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

12

Pybricks Modules and Examples Version v3.2.0

• 2 if the hub previously crashed due to a watchdog timeout, which indicates a firmware
issue.

1.2.1 Status light examples

Turning the light on and off

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = CityHub()

Turn the light on and off 5 times.
for i in range(5):

hub.light.on(Color.RED)
wait(1000)

hub.light.off()
wait(500)

Changing brightness and using custom colors

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = CityHub()

Show the color at 30% brightness.
hub.light.on(Color.RED * 0.3)

wait(2000)

Use your own custom color.
hub.light.on(Color(h=30, s=100, v=50))

wait(2000)

Go through all the colors.
for hue in range(360):

hub.light.on(Color(hue))
wait(10)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

13

Pybricks Modules and Examples Version v3.2.0

Making the light blink

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = CityHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

wait(10000)

Creating light animations

from pybricks.hubs import CityHub
from pybricks.parameters import Color
from pybricks.tools import wait
from umath import sin, pi

Initialize the hub.
hub = CityHub()

Make an animation with multiple colors.
hub.light.animate([Color.RED, Color.GREEN, Color.NONE], interval=500)

wait(10000)

Make the color RED grow faint and bright using a sine pattern.
hub.light.animate([Color.RED * (0.5 * sin(i / 15 * pi) + 0.5) for i in range(30)], 40)

wait(10000)

Cycle through a rainbow of colors.
hub.light.animate([Color(h=i * 8) for i in range(45)], interval=40)

wait(10000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

14

Pybricks Modules and Examples Version v3.2.0

1.2.2 Button and system examples

Using the stop button during your program

from pybricks.hubs import CityHub
from pybricks.parameters import Color, Button
from pybricks.tools import wait, StopWatch

Initialize the hub.
hub = CityHub()

Disable the stop button.
hub.system.set_stop_button(None)

Check the button for 5 seconds.
watch = StopWatch()
while watch.time() < 5000:

Set light to green if pressed, else red.
if hub.button.pressed():

hub.light.on(Color.GREEN)
else:

hub.light.on(Color.RED)

Enable the stop button again.
hub.system.set_stop_button(Button.CENTER)

Now you can press the stop button as usual.
wait(5000)

Turning the hub off

from pybricks.hubs import CityHub
from pybricks.tools import wait

Initialize the hub.
hub = CityHub()

Say goodbye and give some time to send it.
print("Goodbye!")
wait(100)

Shut the hub down.
hub.system.shutdown()

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

15

Pybricks Modules and Examples Version v3.2.0

1.3 Technic Hub

class TechnicHub(top_side=Axis.Z, front_side=Axis.X)
LEGO® Technic Hub.

Initializes the hub. Optionally, specify how the hub is placed in your design by saying in which direction the top
side (with the button) and front side (with the light) are pointing.

Parameters

• top_side (Axis) – The axis that passes through the top side of the hub.

• front_side (Axis) – The axis that passes through the front side of the hub.

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters
color (Color) – Color of the light.

light.off()

Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

Parameters

• color (Color) – Color of the light.

• durations (list) – Sequence of time values of the form [on_1, off_1, on_2,
off_2, ...].

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

16

Pybricks Modules and Examples Version v3.2.0

light.animate(colors, interval)
Animates the light with a sequence of colors, shown one by one for the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

Parameters

• colors (list) – Sequence of Color values.

• interval (Number, ms) – Time between color updates.

Using the IMU

imu.up()→ Side
Checks which side of the hub currently faces upward.

Returns
Side.TOP, Side.BOTTOM, Side.LEFT, Side.RIGHT, Side.FRONT or Side.BACK.

imu.tilt()→ Tuple[int, int]
Gets the pitch and roll angles. This is relative to the user-specified neutral orientation.

The order of rotation is pitch-then-roll. This is equivalent to a positive rotation along the robot y-axis and
then a positive rotation along the x-axis.

Returns
Tuple of pitch and roll angles.

imu.acceleration(axis)→ float: mm/s2

imu.acceleration()→ vector: mm/s2

Gets the acceleration of the device along a given axis in the robot reference frame.

Parameters
axis (Axis) – Axis along which the acceleration should be measured.

Returns
Acceleration along the specified axis. If you specify no axis, this returns a vector of acceler-
ations along all axes.

imu.angular_velocity(axis)→ float: deg/s
imu.angular_velocity()→ vector: deg/s

Gets the angular velocity of the device along a given axis in the robot reference frame.

Parameters
axis (Axis) – Axis along which the angular velocity should be measured.

Returns
Angular velocity along the specified axis. If you specify no axis, this returns a vector of
accelerations along all axes.

imu.heading()→ float: deg
Gets the heading angle relative to the starting orientation. It is a positive rotation around the z-axis in the
robot frame, prior to applying any tilt rotation.

For a vehicle viewed from the top, this means that a positive heading value corresponds to a counterclock-
wise rotation.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

17

Pybricks Modules and Examples Version v3.2.0

Note: This method is not yet implemented.

Returns
Heading angle relative to starting orientation.

imu.reset_heading(angle)
Resets the accumulated heading angle of the robot.

Note: This method is not yet implemented.

Parameters
angle (Number, deg) – Value to which the heading should be reset.

Using the battery

battery.voltage()→ int: mV
Gets the voltage of the battery.

Returns
Battery voltage.

battery.current()→ int: mA
Gets the current supplied by the battery.

Returns
Battery current.

Button and system control

button.pressed()→ Collection[Button]
Checks which buttons are currently pressed.

Returns
Set of pressed buttons.

system.set_stop_button(button)
Sets the button or button combination that stops a running script.

Normally, the center button is used to stop a running script. You can change or disable this behavior in
order to use the button for other purposes.

Parameters
button (Button) – A button such as Button.CENTER , or a tuple of multiple buttons. Choose
None to disable the stop button altogether.

system.name()→ str
Gets the hub name. This is the name you see when connecting via Bluetooth.

Returns
The hub name.

system.storage(self, offset, write=)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

18

Pybricks Modules and Examples Version v3.2.0

system.storage(self, offset, read=)→ bytes
Reads or writes binary data to persistent storage.

This lets you store data that can be used the next time you run the program.

The data will be saved to flash memory when you turn the hub off normally. It will not be saved if the
batteries are removed while the hub is still running.

Once saved, the data will remain available even after you remove the batteries.

Parameters

• offset (int) – The offset from the start of the user storage memory, in bytes.

• read (int) – The number of bytes to read. Omit this argument when writing.

• write (bytes) – The bytes to write. Omit this argument when reading.

Returns
The bytes read if reading, otherwise None.

Raises
ValueError – If you try to read or write data outside of the allowed range.

You can store up to 128 bytes of data on this hub. The data is cleared when you update the Pybricks firmware
or if you restore the original firmware.

system.shutdown()

Stops your program and shuts the hub down.

system.reset_reason()→ int
Finds out how and why the hub (re)booted. This can be useful to diagnose some problems.

Returns

• 0 if the hub was previously powered off normally.

• 1 if the hub rebooted automatically, like after a firmware update.

• 2 if the hub previously crashed due to a watchdog timeout, which indicates a firmware
issue.

1.3.1 Status light examples

Turning the light on and off

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

Turn the light on and off 5 times.
for i in range(5):

hub.light.on(Color.RED)
wait(1000)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

19

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

hub.light.off()
wait(500)

Changing brightness and using custom colors

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

Show the color at 30% brightness.
hub.light.on(Color.RED * 0.3)

wait(2000)

Use your own custom color.
hub.light.on(Color(h=30, s=100, v=50))

wait(2000)

Go through all the colors.
for hue in range(360):

hub.light.on(Color(hue))
wait(10)

Making the light blink

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = TechnicHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

wait(10000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

20

Pybricks Modules and Examples Version v3.2.0

Creating light animations

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color
from pybricks.tools import wait
from umath import sin, pi

Initialize the hub.
hub = TechnicHub()

Make an animation with multiple colors.
hub.light.animate([Color.RED, Color.GREEN, Color.NONE], interval=500)

wait(10000)

Make the color RED grow faint and bright using a sine pattern.
hub.light.animate([Color.RED * (0.5 * sin(i / 15 * pi) + 0.5) for i in range(30)], 40)

wait(10000)

Cycle through a rainbow of colors.
hub.light.animate([Color(h=i * 8) for i in range(45)], interval=40)

wait(10000)

1.3.2 IMU examples

Testing which way is up

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color, Side
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

Define colors for each side in a dictionary.
SIDE_COLORS = {

Side.TOP: Color.RED,
Side.BOTTOM: Color.BLUE,
Side.LEFT: Color.GREEN,
Side.RIGHT: Color.YELLOW,
Side.FRONT: Color.MAGENTA,
Side.BACK: Color.BLACK,

}

Keep updating the color based on detected up side.
while True:

Check which side of the hub is up.
up_side = hub.imu.up()

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

21

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Change the color based on the side.
hub.light.on(SIDE_COLORS[up_side])

Also print the result.
print(up_side)
wait(50)

Reading the tilt value

from pybricks.hubs import TechnicHub
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

while True:
Read the tilt values.
pitch, roll = hub.imu.tilt()

Print the result.
print(pitch, roll)
wait(200)

Using a custom hub orientation

from pybricks.hubs import TechnicHub
from pybricks.tools import wait
from pybricks.geometry import Axis

Initialize the hub. In this case, specify that the hub is mounted with the
top side facing forward and the front side facing to the right.
For example, this is how the hub is mounted in BLAST in the 51515 set.
hub = TechnicHub(top_side=Axis.X, front_side=-Axis.Y)

while True:
Read the tilt values. Now, the values are 0 when BLAST stands upright.
Leaning forward gives positive pitch. Leaning right gives positive roll.
pitch, roll = hub.imu.tilt()

Print the result.
print(pitch, roll)
wait(200)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

22

Pybricks Modules and Examples Version v3.2.0

Reading acceleration and angular velocity vectors

from pybricks.hubs import TechnicHub
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

Get the acceleration vector in g's.
print(hub.imu.acceleration() / 9810)

Get the angular velocity vector.
print(hub.imu.angular_velocity())

Wait so we can see what we printed
wait(5000)

Reading acceleration and angular velocity on one axis

from pybricks.hubs import TechnicHub
from pybricks.tools import wait
from pybricks.geometry import Axis

Initialize the hub.
hub = TechnicHub()

Get the acceleration or angular_velocity along a single axis.
If you need only one value, this is more memory efficient.
while True:

Read the forward acceleration.
forward_acceleration = hub.imu.acceleration(Axis.X)

Read the yaw rate.
yaw_rate = hub.imu.angular_velocity(Axis.Z)

Print the yaw rate.
print(yaw_rate)
wait(100)

1.3.3 Button and system examples

Using the stop button during your program

from pybricks.hubs import TechnicHub
from pybricks.parameters import Color, Button
from pybricks.tools import wait, StopWatch

Initialize the hub.
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

23

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

hub = TechnicHub()

Disable the stop button.
hub.system.set_stop_button(None)

Check the button for 5 seconds.
watch = StopWatch()
while watch.time() < 5000:

Set light to green if pressed, else red.
if hub.button.pressed():

hub.light.on(Color.GREEN)
else:

hub.light.on(Color.RED)

Enable the stop button again.
hub.system.set_stop_button(Button.CENTER)

Now you can press the stop button as usual.
wait(5000)

Turning the hub off

from pybricks.hubs import TechnicHub
from pybricks.tools import wait

Initialize the hub.
hub = TechnicHub()

Say goodbye and give some time to send it.
print("Goodbye!")
wait(100)

Shut the hub down.
hub.system.shutdown()

1.4 Prime Hub / Inventor Hub

class InventorHub

This class is the same as the PrimeHub class, shown below. Both classes work on both hubs.

These hubs are completely identical. They use the same Pybricks firmware.

class PrimeHub(top_side=Axis.Z, front_side=Axis.X)
LEGO® SPIKE Prime Hub.

Initializes the hub. Optionally, specify how the hub is placed in your design by saying in which direction the top
side (with the buttons) and front side (with the USB port) are pointing.

Parameters

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

24

Pybricks Modules and Examples Version v3.2.0

• top_side (Axis) – The axis that passes through the top side of the hub.

• front_side (Axis) – The axis that passes through the front side of the hub.

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters
color (Color) – Color of the light.

light.off()

Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

Parameters

• color (Color) – Color of the light.

• durations (list) – Sequence of time values of the form [on_1, off_1, on_2,
off_2, ...].

light.animate(colors, interval)
Animates the light with a sequence of colors, shown one by one for the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

25

Pybricks Modules and Examples Version v3.2.0

Parameters

• colors (list) – Sequence of Color values.

• interval (Number, ms) – Time between color updates.

Using the light matrix display

display.orientation(up)
Sets the orientation of the light matrix display.

Only new displayed images and pixels are affected. The existing display contents remain unchanged.

Parameters
top (Side) – Which side of the light matrix display is “up” in your design. Choose Side.
TOP, Side.LEFT, Side.RIGHT, or Side.BOTTOM.

display.off()

Turns off all the pixels.

display.pixel(row, column, brightness=100)
Turns on one pixel at the specified brightness.

Parameters

• row (Number) – Vertical grid index, starting at 0 from the top.

• column (Number) – Horizontal grid index, starting at 0 from the left.

• brightness (Number brightness: %) – Brightness of the pixel.

display.icon(icon)
Displays an icon, represented by a matrix of brightness: % values.

Parameters
icon (Matrix) – Matrix of intensities (brightness: %). A 2D list is also accepted.

display.animate(matrices, interval)
Displays an animation made using a list of images.

Each image has the same format as above. Each image is shown for the given interval. The animation
repeats forever while the rest of your program keeps running.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

26

Pybricks Modules and Examples Version v3.2.0

Parameters

• matrices (iter) – Sequence of Matrix of intensities.

• interval (Number, ms) – Time to display each image in the list.

display.number(number)
Displays a number in the range -99 to 99.

A minus sign (-) is shown as a faint dot in the center of the display. Numbers greater than 99 are shown as
>. Numbers less than -99 are shown as <.

Parameters
number (int) – The number to be displayed.

display.char(char)
Displays a character or symbol on the light grid. This may be any letter (a–z), capital letter (A–Z) or one
of the following symbols: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}.

Parameters
character (str) – The character or symbol to be displayed.

display.text(text, on=500, off=50)
Displays a text string, one character at a time, with a pause between each character. After the last character
is shown, all lights turn off.

Parameters

• text (str) – The text to be displayed.

• on (Number, ms) – For how long a character is shown.

• off (Number, ms) – For how long the display is off between characters.

Using the buttons

buttons.pressed()→ Collection[Button]
Checks which buttons are currently pressed.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

27

Pybricks Modules and Examples Version v3.2.0

Returns
Set of pressed buttons.

Using the IMU

imu.up()→ Side
Checks which side of the hub currently faces upward.

Returns
Side.TOP, Side.BOTTOM, Side.LEFT, Side.RIGHT, Side.FRONT or Side.BACK.

imu.tilt()→ Tuple[int, int]
Gets the pitch and roll angles. This is relative to the user-specified neutral orientation.

The order of rotation is pitch-then-roll. This is equivalent to a positive rotation along the robot y-axis and
then a positive rotation along the x-axis.

Returns
Tuple of pitch and roll angles.

imu.acceleration(axis)→ float: mm/s2

imu.acceleration()→ vector: mm/s2

Gets the acceleration of the device along a given axis in the robot reference frame.

Parameters
axis (Axis) – Axis along which the acceleration should be measured.

Returns
Acceleration along the specified axis. If you specify no axis, this returns a vector of acceler-
ations along all axes.

imu.angular_velocity(axis)→ float: deg/s
imu.angular_velocity()→ vector: deg/s

Gets the angular velocity of the device along a given axis in the robot reference frame.

Parameters
axis (Axis) – Axis along which the angular velocity should be measured.

Returns
Angular velocity along the specified axis. If you specify no axis, this returns a vector of
accelerations along all axes.

imu.heading()→ float: deg
Gets the heading angle relative to the starting orientation. It is a positive rotation around the z-axis in the
robot frame, prior to applying any tilt rotation.

For a vehicle viewed from the top, this means that a positive heading value corresponds to a counterclock-
wise rotation.

Note: This method is not yet implemented.

Returns
Heading angle relative to starting orientation.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

28

Pybricks Modules and Examples Version v3.2.0

imu.reset_heading(angle)
Resets the accumulated heading angle of the robot.

Note: This method is not yet implemented.

Parameters
angle (Number, deg) – Value to which the heading should be reset.

Using the speaker

speaker.volume(volume)
speaker.volume()→ int: %

Gets or sets the speaker volume.

If no volume is given, this method returns the current volume.

Parameters
volume (Number, %) – Volume of the speaker in the 0-100 range.

speaker.beep(frequency=500, duration=100)
Play a beep/tone.

Parameters

• frequency (Number, Hz) – Frequency of the beep in the 64-24000 Hz range.

• duration (Number, ms) – Duration of the beep. If the duration is less than 0, then the
method returns immediately and the frequency play continues to play indefinitely.

speaker.play_notes(notes, tempo=120)
Plays a sequence of musical notes. For example: ["C4/4", "C4/4", "G4/4", "G4/4"].

Each note is a string with the following format:

• The first character is the name of the note, A to G or R for a rest.

• Note names can also include an accidental # (sharp) or b (flat). B#/Cb and E#/Fb are not allowed.

• The note name is followed by the octave number 2 to 8. For example C4 is middle C. The octave
changes to the next number at the note C, for example, B3 is the note below middle C (C4).

• The octave is followed by / and a number that indicates the size of the note. For example /4 is a quarter
note, /8 is an eighth note and so on.

• This can optionally followed by a . to make a dotted note. Dotted notes are 1-1/2 times as long as
notes without a dot.

• The note can optionally end with a _ which is a tie or a slur. This causes there to be no pause between
this note and the next note.

Parameters

• notes (iter) – A sequence of notes to be played.

• tempo (int) – Beats per minute. A quarter note is one beat.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

29

Pybricks Modules and Examples Version v3.2.0

Using the battery

battery.voltage()→ int: mV
Gets the voltage of the battery.

Returns
Battery voltage.

battery.current()→ int: mA
Gets the current supplied by the battery.

Returns
Battery current.

Getting the charger status

charger.connected()→ bool
Checks whether a charger is connected via USB.

Returns
True if a charger is connected, False if not.

charger.current()→ int: mA
Gets the charging current.

Returns
Charging current.

charger.status()→ int
Gets the status of the battery charger, represented by one of the following values. This corresponds to the
battery light indicator right next to the USB port.

0. Not charging (light is off).

1. Charging (light is red).

2. Charging is complete (light is green).

3. There is a problem with the charger (light is yellow).

Returns
Status value.

System control

system.set_stop_button(button)
Sets the button or button combination that stops a running script.

Normally, the center button is used to stop a running script. You can change or disable this behavior in
order to use the button for other purposes.

Parameters
button (Button) – A button such as Button.CENTER , or a tuple of multiple buttons. Choose
None to disable the stop button altogether.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

30

Pybricks Modules and Examples Version v3.2.0

system.name()→ str
Gets the hub name. This is the name you see when connecting via Bluetooth.

Returns
The hub name.

system.storage(self, offset, write=)
system.storage(self, offset, read=)→ bytes

Reads or writes binary data to persistent storage.

This lets you store data that can be used the next time you run the program.

The data will be saved to flash memory when you turn the hub off normally. It will not be saved if the
batteries are removed while the hub is still running.

Once saved, the data will remain available even after you remove the batteries.

Parameters

• offset (int) – The offset from the start of the user storage memory, in bytes.

• read (int) – The number of bytes to read. Omit this argument when writing.

• write (bytes) – The bytes to write. Omit this argument when reading.

Returns
The bytes read if reading, otherwise None.

Raises
ValueError – If you try to read or write data outside of the allowed range.

You can store up to 512 bytes of data on this hub.

system.shutdown()

Stops your program and shuts the hub down.

system.reset_reason()→ int
Finds out how and why the hub (re)booted. This can be useful to diagnose some problems.

Returns

• 0 if the hub was previously powered off normally.

• 1 if the hub rebooted automatically, like after a firmware update.

• 2 if the hub previously crashed due to a watchdog timeout, which indicates a firmware
issue.

Note: The examples below use the PrimeHub class. The examples work fine on both hubs because they are the
identical. If you prefer, you can change this to InventorHub.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

31

Pybricks Modules and Examples Version v3.2.0

1.4.1 Status light examples

Turning the light on and off

from pybricks.hubs import PrimeHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Turn the light on and off 5 times.
for i in range(5):

hub.light.on(Color.RED)
wait(1000)

hub.light.off()
wait(500)

Changing brightness and using custom colors

from pybricks.hubs import PrimeHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Show the color at 30% brightness.
hub.light.on(Color.RED * 0.3)

wait(2000)

Use your own custom color.
hub.light.on(Color(h=30, s=100, v=50))

wait(2000)

Go through all the colors.
for hue in range(360):

hub.light.on(Color(hue))
wait(10)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

32

Pybricks Modules and Examples Version v3.2.0

Making the light blink

from pybricks.hubs import PrimeHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = PrimeHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

wait(10000)

Creating light animations

from pybricks.hubs import PrimeHub
from pybricks.parameters import Color
from pybricks.tools import wait
from umath import sin, pi

Initialize the hub.
hub = PrimeHub()

Make an animation with multiple colors.
hub.light.animate([Color.RED, Color.GREEN, Color.NONE], interval=500)

wait(10000)

Make the color RED grow faint and bright using a sine pattern.
hub.light.animate([Color.RED * (0.5 * sin(i / 15 * pi) + 0.5) for i in range(30)], 40)

wait(10000)

Cycle through a rainbow of colors.
hub.light.animate([Color(h=i * 8) for i in range(45)], interval=40)

wait(10000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

33

Pybricks Modules and Examples Version v3.2.0

1.4.2 Matrix display examples

Displaying images

from pybricks.hubs import PrimeHub
from pybricks.tools import wait
from pybricks.parameters import Icon

Initialize the hub.
hub = PrimeHub()

Display a big arrow pointing up.
hub.display.icon(Icon.UP)

Wait so we can see what is displayed.
wait(2000)

Display a heart at half brightness.
hub.display.icon(Icon.HEART / 2)

Wait so we can see what is displayed.
wait(2000)

Displaying numbers

from pybricks.hubs import PrimeHub
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Count from 0 to 99.
for i in range(100):

hub.display.number(i)
wait(200)

Displaying text

from pybricks.hubs import PrimeHub
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Display the letter A for two seconds.
hub.display.char("A")
wait(2000)

Display text, one letter at a time.
hub.display.text("Hello, world!")

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

34

Pybricks Modules and Examples Version v3.2.0

Displaying individual pixels

from pybricks.hubs import PrimeHub
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Turn on the pixel at row 1, column 2.
hub.display.pixel(1, 2)
wait(2000)

Turn on the pixel at row 2, column 4, at 50% brightness.
hub.display.pixel(2, 4, 50)
wait(2000)

Turn off the pixel at row 1, column 2.
hub.display.pixel(1, 2, 0)
wait(2000)

Changing the display orientation

from pybricks.hubs import PrimeHub
from pybricks.tools import wait
from pybricks.parameters import Side

Initialize the hub.
hub = PrimeHub()

Rotate the display. Now right is up.
hub.display.orientation(up=Side.RIGHT)

Display a number. This will be shown sideways.
hub.display.number(23)

Wait so we can see what is displayed.
wait(10000)

from pybricks.hubs import PrimeHub
from pybricks.parameters import Icon
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

while True:

Check which side of the hub is up.
up_side = hub.imu.up()

Use this side to set the display orientation.
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

35

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

hub.display.orientation(up_side)

Display something, like an arrow.
hub.display.icon(Icon.UP)

wait(10)

Making your own images

from pybricks.hubs import PrimeHub
from pybricks.tools import wait
from pybricks.geometry import Matrix

Initialize the hub.
hub = PrimeHub()

Make a square that is bright on the outside and faint in the middle.
SQUARE = Matrix(

[
[100, 100, 100, 100, 100],
[100, 50, 50, 50, 100],
[100, 50, 0, 50, 100],
[100, 50, 50, 50, 100],
[100, 100, 100, 100, 100],

]
)

Display the square.
hub.display.icon(SQUARE)
wait(3000)

Make an image using a Python list comprehension. In this image, the
brightness of each pixel is the sum of the row and column index. So the
light is faint in the top left and bright in the bottom right.
GRADIENT = Matrix([[(r + c) for c in range(5)] for r in range(5)]) * 12.5

Display the generated gradient.
hub.display.icon(GRADIENT)
wait(3000)

Combining icons to make expressions

from pybricks.hubs import PrimeHub
from pybricks.parameters import Icon, Side
from pybricks.tools import wait

from urandom import randint

Initialize the hub.
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

36

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

hub = PrimeHub()
hub.display.orientation(up=Side.RIGHT)

while True:

Start with random left brow: up or down.
if randint(0, 100) < 70:

brows = Icon.EYE_LEFT_BROW * 0.5
else:

brows = Icon.EYE_LEFT_BROW_UP * 0.5

Add random right brow: up or down.
if randint(0, 100) < 70:

brows += Icon.EYE_RIGHT_BROW * 0.5
else:

brows += Icon.EYE_RIGHT_BROW_UP * 0.5

for i in range(3):
Display eyes open plus the random brows.
hub.display.icon(Icon.EYE_LEFT + Icon.EYE_RIGHT + brows)
wait(2000)

Display eyes blinked plus the random brows.
hub.display.icon(Icon.EYE_LEFT_BLINK * 0.7 + Icon.EYE_RIGHT_BLINK * 0.7 + brows)
wait(200)

Displaying animations

from pybricks.hubs import PrimeHub
from pybricks.parameters import Icon
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Turn the hub light off (optional).
hub.light.off()

Create a list of intensities from 0 to 100 and back.
brightness = list(range(0, 100, 4)) + list(range(100, 0, -4))

Create an animation of the heart icon with changing brightness.
hub.display.animate([Icon.HEART * i / 100 for i in brightness], 30)

The animation repeats in the background. Here we just wait.
while True:

wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

37

Pybricks Modules and Examples Version v3.2.0

1.4.3 Button examples

Detecting button presses

from pybricks.hubs import PrimeHub
from pybricks.parameters import Button, Icon
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Wait for any button to be pressed, and save the result.
pressed = []
while not any(pressed):

pressed = hub.buttons.pressed()
wait(10)

Display a circle.
hub.display.icon(Icon.CIRCLE)

Wait for all buttons to be released.
while any(hub.buttons.pressed()):

wait(10)

Display an arrow to indicate which button was pressed.
if Button.LEFT in pressed:

hub.display.icon(Icon.ARROW_LEFT_DOWN)
elif Button.RIGHT in pressed:

hub.display.icon(Icon.ARROW_RIGHT_DOWN)
elif Button.BLUETOOTH in pressed:

hub.display.icon(Icon.ARROW_RIGHT_UP)

wait(3000)

1.4.4 IMU examples

Testing which way is up

from pybricks.hubs import PrimeHub
from pybricks.parameters import Color, Side
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Define colors for each side in a dictionary.
SIDE_COLORS = {

Side.TOP: Color.RED,
Side.BOTTOM: Color.BLUE,
Side.LEFT: Color.GREEN,
Side.RIGHT: Color.YELLOW,

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

38

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Side.FRONT: Color.MAGENTA,
Side.BACK: Color.BLACK,

}

Keep updating the color based on detected up side.
while True:

Check which side of the hub is up.
up_side = hub.imu.up()

Change the color based on the side.
hub.light.on(SIDE_COLORS[up_side])

Also print the result.
print(up_side)
wait(50)

Reading the tilt value

from pybricks.hubs import PrimeHub
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

while True:
Read the tilt values.
pitch, roll = hub.imu.tilt()

Print the result.
print(pitch, roll)
wait(200)

Using a custom hub orientation

from pybricks.hubs import PrimeHub
from pybricks.tools import wait
from pybricks.geometry import Axis

Initialize the hub. In this case, specify that the hub is mounted with the
top side facing forward and the front side facing to the right.
For example, this is how the hub is mounted in BLAST in the 51515 set.
hub = PrimeHub(top_side=Axis.X, front_side=-Axis.Y)

while True:
Read the tilt values. Now, the values are 0 when BLAST stands upright.
Leaning forward gives positive pitch. Leaning right gives positive roll.
pitch, roll = hub.imu.tilt()

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

39

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Print the result.
print(pitch, roll)
wait(200)

Reading acceleration and angular velocity vectors

from pybricks.hubs import PrimeHub
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Get the acceleration vector in g's.
print(hub.imu.acceleration() / 9810)

Get the angular velocity vector.
print(hub.imu.angular_velocity())

Wait so we can see what we printed
wait(5000)

Reading acceleration and angular velocity on one axis

from pybricks.hubs import PrimeHub
from pybricks.tools import wait
from pybricks.geometry import Axis

Initialize the hub.
hub = PrimeHub()

Get the acceleration or angular_velocity along a single axis.
If you need only one value, this is more memory efficient.
while True:

Read the forward acceleration.
forward_acceleration = hub.imu.acceleration(Axis.X)

Read the yaw rate.
yaw_rate = hub.imu.angular_velocity(Axis.Z)

Print the yaw rate.
print(yaw_rate)
wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

40

Pybricks Modules and Examples Version v3.2.0

1.4.5 System examples

Changing the stop button combination

from pybricks.hubs import PrimeHub
from pybricks.parameters import Button

Initialize the hub.
hub = PrimeHub()

Configure the stop button combination. Now, your program stops
if you press the center and Bluetooth buttons simultaneously.
hub.system.set_stop_button((Button.CENTER, Button.BLUETOOTH))

Now we can use the center button as a normal button.
while True:

Play a sound if the center button is pressed.
if Button.CENTER in hub.buttons.pressed():

hub.speaker.beep()

Turning the hub off

from pybricks.hubs import PrimeHub
from pybricks.tools import wait

Initialize the hub.
hub = PrimeHub()

Say goodbye and give some time to send it.
print("Goodbye!")
wait(100)

Shut the hub down.
hub.system.shutdown()

1.5 Essential Hub

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

41

Pybricks Modules and Examples Version v3.2.0

class EssentialHub(top_side=Axis.Z, front_side=Axis.X)
LEGO® SPIKE Essential Hub.

Initializes the hub. Optionally, specify how the hub is placed in your design by saying in which direction the top
side (with the button) and the front side (with the USB port, and I/O ports A and B) are pointing.

Parameters

• top_side (Axis) – The axis that passes through the top side of the hub.

• front_side (Axis) – The axis that passes through the front side of the hub.

Using the hub status light

light.on(color)
Turns on the light at the specified color.

Parameters
color (Color) – Color of the light.

light.off()

Turns off the light.

light.blink(color, durations)
Blinks the light at a given color by turning it on and off for given durations.

The light keeps blinking indefinitely while the rest of your program keeps running.

This method provides a simple way to make basic but useful patterns. For more generic and multi-color
patterns, use animate() instead.

Parameters

• color (Color) – Color of the light.

• durations (list) – Sequence of time values of the form [on_1, off_1, on_2,
off_2, ...].

light.animate(colors, interval)
Animates the light with a sequence of colors, shown one by one for the given interval.

The animation runs in the background while the rest of your program keeps running. When the animation
completes, it repeats.

Parameters

• colors (list) – Sequence of Color values.

• interval (Number, ms) – Time between color updates.

Using the button

button.pressed()→ Collection[Button]
Checks which buttons are currently pressed.

Returns
Set of pressed buttons.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

42

Pybricks Modules and Examples Version v3.2.0

Using the IMU

imu.up()→ Side
Checks which side of the hub currently faces upward.

Returns
Side.TOP, Side.BOTTOM, Side.LEFT, Side.RIGHT, Side.FRONT or Side.BACK.

imu.tilt()→ Tuple[int, int]
Gets the pitch and roll angles. This is relative to the user-specified neutral orientation.

The order of rotation is pitch-then-roll. This is equivalent to a positive rotation along the robot y-axis and
then a positive rotation along the x-axis.

Returns
Tuple of pitch and roll angles.

imu.acceleration(axis)→ float: mm/s2

imu.acceleration()→ vector: mm/s2

Gets the acceleration of the device along a given axis in the robot reference frame.

Parameters
axis (Axis) – Axis along which the acceleration should be measured.

Returns
Acceleration along the specified axis. If you specify no axis, this returns a vector of acceler-
ations along all axes.

imu.angular_velocity(axis)→ float: deg/s
imu.angular_velocity()→ vector: deg/s

Gets the angular velocity of the device along a given axis in the robot reference frame.

Parameters
axis (Axis) – Axis along which the angular velocity should be measured.

Returns
Angular velocity along the specified axis. If you specify no axis, this returns a vector of
accelerations along all axes.

imu.heading()→ float: deg
Gets the heading angle relative to the starting orientation. It is a positive rotation around the z-axis in the
robot frame, prior to applying any tilt rotation.

For a vehicle viewed from the top, this means that a positive heading value corresponds to a counterclock-
wise rotation.

Note: This method is not yet implemented.

Returns
Heading angle relative to starting orientation.

imu.reset_heading(angle)
Resets the accumulated heading angle of the robot.

Note: This method is not yet implemented.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

43

Pybricks Modules and Examples Version v3.2.0

Parameters
angle (Number, deg) – Value to which the heading should be reset.

Using the battery

battery.voltage()→ int: mV
Gets the voltage of the battery.

Returns
Battery voltage.

battery.current()→ int: mA
Gets the current supplied by the battery.

Returns
Battery current.

Getting the charger status

charger.connected()→ bool
Checks whether a charger is connected via USB.

Returns
True if a charger is connected, False if not.

charger.current()→ int: mA
Gets the charging current.

Returns
Charging current.

charger.status()→ int
Gets the status of the battery charger, represented by one of the following values. This corresponds to the
battery light indicator right next to the USB port.

0. Not charging (light is off).

1. Charging (light is red).

2. Charging is complete (light is green).

3. There is a problem with the charger (light is yellow).

Returns
Status value.

System control

system.set_stop_button(button)
Sets the button or button combination that stops a running script.

Normally, the center button is used to stop a running script. You can change or disable this behavior in
order to use the button for other purposes.

Parameters
button (Button) – A button such as Button.CENTER , or a tuple of multiple buttons. Choose
None to disable the stop button altogether.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

44

Pybricks Modules and Examples Version v3.2.0

system.name()→ str
Gets the hub name. This is the name you see when connecting via Bluetooth.

Returns
The hub name.

system.storage(self, offset, write=)
system.storage(self, offset, read=)→ bytes

Reads or writes binary data to persistent storage.

This lets you store data that can be used the next time you run the program.

The data will be saved to flash memory when you turn the hub off normally. It will not be saved if the
batteries are removed while the hub is still running.

Once saved, the data will remain available even after you remove the batteries.

Parameters

• offset (int) – The offset from the start of the user storage memory, in bytes.

• read (int) – The number of bytes to read. Omit this argument when writing.

• write (bytes) – The bytes to write. Omit this argument when reading.

Returns
The bytes read if reading, otherwise None.

Raises
ValueError – If you try to read or write data outside of the allowed range.

You can store up to 512 bytes of data on this hub.

system.shutdown()

Stops your program and shuts the hub down.

system.reset_reason()→ int
Finds out how and why the hub (re)booted. This can be useful to diagnose some problems.

Returns

• 0 if the hub was previously powered off normally.

• 1 if the hub rebooted automatically, like after a firmware update.

• 2 if the hub previously crashed due to a watchdog timeout, which indicates a firmware
issue.

1.5.1 Status light examples

Turning the light on and off

from pybricks.hubs import EssentialHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = EssentialHub()

Turn the light on and off 5 times.
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

45

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

for i in range(5):

hub.light.on(Color.RED)
wait(1000)

hub.light.off()
wait(500)

Changing brightness and using custom colors

from pybricks.hubs import EssentialHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub.
hub = EssentialHub()

Show the color at 30% brightness.
hub.light.on(Color.RED * 0.3)

wait(2000)

Use your own custom color.
hub.light.on(Color(h=30, s=100, v=50))

wait(2000)

Go through all the colors.
for hue in range(360):

hub.light.on(Color(hue))
wait(10)

Making the light blink

from pybricks.hubs import EssentialHub
from pybricks.parameters import Color
from pybricks.tools import wait

Initialize the hub
hub = EssentialHub()

Keep blinking red on and off.
hub.light.blink(Color.RED, [500, 500])

wait(10000)

Keep blinking green slowly and then quickly.
hub.light.blink(Color.GREEN, [500, 500, 50, 900])

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

46

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

wait(10000)

Creating light animations

from pybricks.hubs import EssentialHub
from pybricks.parameters import Color
from pybricks.tools import wait
from umath import sin, pi

Initialize the hub.
hub = EssentialHub()

Make an animation with multiple colors.
hub.light.animate([Color.RED, Color.GREEN, Color.NONE], interval=500)

wait(10000)

Make the color RED grow faint and bright using a sine pattern.
hub.light.animate([Color.RED * (0.5 * sin(i / 15 * pi) + 0.5) for i in range(30)], 40)

wait(10000)

Cycle through a rainbow of colors.
hub.light.animate([Color(h=i * 8) for i in range(45)], interval=40)

wait(10000)

1.5.2 IMU examples

Testing which way is up

from pybricks.hubs import EssentialHub
from pybricks.parameters import Color, Side
from pybricks.tools import wait

Initialize the hub.
hub = EssentialHub()

Define colors for each side in a dictionary.
SIDE_COLORS = {

Side.TOP: Color.RED,
Side.BOTTOM: Color.BLUE,
Side.LEFT: Color.GREEN,
Side.RIGHT: Color.YELLOW,
Side.FRONT: Color.MAGENTA,
Side.BACK: Color.BLACK,

}

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

47

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Keep updating the color based on detected up side.
while True:

Check which side of the hub is up.
up_side = hub.imu.up()

Change the color based on the side.
hub.light.on(SIDE_COLORS[up_side])

Also print the result.
print(up_side)
wait(50)

Reading the tilt value

from pybricks.hubs import EssentialHub
from pybricks.tools import wait

Initialize the hub.
hub = EssentialHub()

while True:
Read the tilt values.
pitch, roll = hub.imu.tilt()

Print the result.
print(pitch, roll)
wait(200)

Using a custom hub orientation

from pybricks.hubs import EssentialHub
from pybricks.tools import wait
from pybricks.geometry import Axis

Initialize the hub. In this case, specify that the hub is mounted with the
top side facing forward and the front side facing to the right.
For example, this is how the hub is mounted in BLAST in the 51515 set.
hub = EssentialHub(top_side=Axis.X, front_side=-Axis.Y)

while True:
Read the tilt values. Now, the values are 0 when BLAST stands upright.
Leaning forward gives positive pitch. Leaning right gives positive roll.
pitch, roll = hub.imu.tilt()

Print the result.
print(pitch, roll)
wait(200)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

48

Pybricks Modules and Examples Version v3.2.0

Reading acceleration and angular velocity vectors

from pybricks.hubs import EssentialHub
from pybricks.tools import wait

Initialize the hub.
hub = EssentialHub()

Get the acceleration vector in g's.
print(hub.imu.acceleration() / 9810)

Get the angular velocity vector.
print(hub.imu.angular_velocity())

Wait so we can see what we printed
wait(5000)

Reading acceleration and angular velocity on one axis

from pybricks.hubs import EssentialHub
from pybricks.tools import wait
from pybricks.geometry import Axis

Initialize the hub.
hub = EssentialHub()

Get the acceleration or angular_velocity along a single axis.
If you need only one value, this is more memory efficient.
while True:

Read the forward acceleration.
forward_acceleration = hub.imu.acceleration(Axis.X)

Read the yaw rate.
yaw_rate = hub.imu.angular_velocity(Axis.Z)

Print the yaw rate.
print(yaw_rate)
wait(100)

1.5.3 System examples

Using the stop button during your program

from pybricks.hubs import EssentialHub
from pybricks.parameters import Color, Button
from pybricks.tools import wait, StopWatch

Initialize the hub.
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

49

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

hub = EssentialHub()

Disable the stop button.
hub.system.set_stop_button(None)

Check the button for 5 seconds.
watch = StopWatch()
while watch.time() < 5000:

Set light to green if pressed, else red.
if hub.button.pressed():

hub.light.on(Color.GREEN)
else:

hub.light.on(Color.RED)

Enable the stop button again.
hub.system.set_stop_button(Button.CENTER)

Now you can press the stop button as usual.
wait(5000)

Turning the hub off

from pybricks.hubs import EssentialHub
from pybricks.tools import wait

Initialize the hub.
hub = EssentialHub()

Say goodbye and give some time to send it.
print("Goodbye!")
wait(100)

Shut the hub down.
hub.system.shutdown()

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

50

movehub.html

Pybricks Modules and Examples Version v3.2.0

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

51

cityhub.html
technichub.html
primehub.html
primehub.html

Pybricks Modules and Examples Version v3.2.0

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

52

essentialhub.html

CHAPTER

TWO

PUPDEVICES – MOTORS, SENSORS, LIGHTS

LEGO® Powered Up motor, sensors, and lights.

2.1 Motors without rotation sensors

Figure 2.1: Powered Up motors without rotation sensors. The arrows indicate the default positive direction.

class DCMotor(port, positive_direction=Direction.CLOCKWISE)
LEGO® Powered Up motor without rotation sensors.

Parameters

• port (Port) – Port to which the motor is connected.

• positive_direction (Direction) – Which direction the motor should turn when you
give a positive duty cycle value.

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

Parameters
duty (Number, %) – The duty cycle (-100.0 to 100).

stop()

Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

brake()

Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

53

Pybricks Modules and Examples Version v3.2.0

settings(max_voltage)
settings()→ Tuple[int]

Configures motor settings. If no arguments are given, this returns the current values.

Parameters
max_voltage (Number, mV) – Maximum voltage applied to the motor during all motor com-
mands.

2.1.1 Examples

Making a train drive forever

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the motor.
train_motor = DCMotor(Port.A)

Choose the "power" level for your train. Negative means reverse.
train_motor.dc(50)

Keep doing nothing. The train just keeps going.
while True:

wait(1000)

Making the motor move back and forth

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor without rotation sensors on port A.
example_motor = DCMotor(Port.A)

Make the motor go clockwise (forward) at 70% duty cycle ("70% power").
example_motor.dc(70)

Wait for three seconds.
wait(3000)

Make the motor go counterclockwise (backward) at 70% duty cycle.
example_motor.dc(-70)

Wait for three seconds.
wait(3000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

54

Pybricks Modules and Examples Version v3.2.0

Changing the positive direction

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port, Direction
from pybricks.tools import wait

Initialize a motor without rotation sensors on port A,
with the positive direction as counterclockwise.
example_motor = DCMotor(Port.A, Direction.COUNTERCLOCKWISE)

When we choose a positive duty cycle, the motor now goes counterclockwise.
example_motor.dc(70)

This is useful when your (train) motor is mounted in reverse or upside down.
By changing the positive direction, your script will be easier to read,
because a positive value now makes your train/robot go forward.

Wait for three seconds.
wait(3000)

Starting and stopping

from pybricks.pupdevices import DCMotor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor without rotation sensors on port A.
example_motor = DCMotor(Port.A)

Start and stop 10 times.
for count in range(10):

print("Counter:", count)

example_motor.dc(70)
wait(1000)

example_motor.stop()
wait(1000)

2.2 Motors with rotation sensors

class Motor(port, positive_direction=Direction.CLOCKWISE, gears=None, reset_angle=True)
LEGO® Powered Up motor with rotation sensors.

Parameters

• port (Port) – Port to which the motor is connected.

• positive_direction (Direction) – Which direction the motor should turn when you
give a positive speed value or angle.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

55

Pybricks Modules and Examples Version v3.2.0

Figure 2.2: Powered Up motors with rotation sensors. The arrows indicate the default positive direction. See the hubs
module for default directions of built-in motors.

• gears (list) – List of gears linked to the motor.

For example: [12, 36] represents a gear train with a 12-tooth and a 36-tooth gear. Use a
list of lists for multiple gear trains, such as [[12, 36], [20, 16, 40]].

When you specify a gear train, all motor commands and settings are automatically adjusted
to account for the resulting gear ratio. The motor direction remains unchanged by this.

• reset_angle (bool) – Choose True to reset the rotation sensor value to the absolute marker
angle (between -180 and 179). Choose False to keep the current value, so your program
knows where it left off last time.

Measuring

speed()→ int: deg/s
Gets the speed of the motor.

Returns
Motor speed.

angle()→ int: deg
Gets the rotation angle of the motor.

Returns
Motor angle.

reset_angle(angle=None)
Sets the accumulated rotation angle of the motor to a desired value.

If you don’t specify an angle, the absolute angle will be used if your motor supports it.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

56

Pybricks Modules and Examples Version v3.2.0

Parameters
angle (Number, deg) – Value to which the angle should be reset.

load()→ int: mNm
Estimates the load that holds back the motor when it tries to move.

Returns
The load torque.

stalled()→ bool
Checks if the motor is currently stalled.

It is stalled when it cannot reach the target speed or position, even with the maximum actuation signal.

Returns
True if the motor is stalled, False if not.

Stopping

stop()

Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

brake()

Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

hold()

Stops the motor and actively holds it at its current angle.

Running forever

run(speed)
Runs the motor at a constant speed.

The motor accelerates to the given speed and keeps running at this speed until you give a new command.

Parameters
speed (Number, deg/s) – Speed of the motor.

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

Parameters
duty (Number, %) – The duty cycle (-100.0 to 100).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

57

Pybricks Modules and Examples Version v3.2.0

Running by a fixed amount

run_time(speed, time, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed for a given amount of time.

The motor accelerates to the given speed, keeps running at this speed, and then decelerates. The total
maneuver lasts for exactly the given amount of time.

Parameters

• speed (Number, deg/s) – Speed of the motor.

• time (Number, ms) – Duration of the maneuver.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

run_angle(speed, rotation_angle, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed by a given angle.

Parameters

• speed (Number, deg/s) – Speed of the motor.

• rotation_angle (Number, deg) – Angle by which the motor should rotate.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

run_target(speed, target_angle, then=Stop.HOLD, wait=True)
Runs the motor at a constant speed towards a given target angle.

The direction of rotation is automatically selected based on the target angle. It does not matter if speed is
positive or negative.

Parameters

• speed (Number, deg/s) – Speed of the motor.

• target_angle (Number, deg) – Angle that the motor should rotate to.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the motor to reach the target before continuing with the rest of the
program.

track_target(target_angle)
Tracks a target angle. This is similar to run_target(), but the usual smooth acceleration is skipped: it
will move to the target angle as fast as possible. This method is useful if you want to continuously change
the target angle.

Parameters
target_angle (Number, deg) – Target angle that the motor should rotate to.

run_until_stalled(speed, then=Stop.COAST, duty_limit=None)→ int: deg
Runs the motor at a constant speed until it stalls.

Parameters

• speed (Number, deg/s) – Speed of the motor.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

58

Pybricks Modules and Examples Version v3.2.0

• then (Stop) – What to do after coming to a standstill.

• duty_limit (Number, %) – Duty cycle limit during this command. This is useful to avoid
applying the full motor torque to a geared or lever mechanism. If it is None, the duty limit
won’t be changed during this command.

Returns
Angle at which the motor becomes stalled.

done()→ bool
Checks if an ongoing command or maneuver is done.

Returns
True if the command is done, False if not.

Motor settings

settings(max_voltage)
settings()→ Tuple[int]

Configures motor settings. If no arguments are given, this returns the current values.

Parameters
max_voltage (Number, mV) – Maximum voltage applied to the motor during all motor com-
mands.

Control settings

control.limits(speed, acceleration, torque)
control.limits()→ Tuple[int, int, int]

Configures the maximum speed, acceleration, and torque.

If no arguments are given, this will return the current values.

The new acceleration and speed limit will become effective when you give a new motor command.
Ongoing maneuvers are not affected.

Parameters

• speed (Number, deg/s or Number, mm/s) – Maximum speed. All speed commands
will be capped to this value.

• acceleration (Number, deg/s2 or Number, mm/s2) – Slope of the speed curve
when accelerating or decelerating. Use a tuple to set acceleration and deceleration sep-
arately. If one value is given, it is used for both.

• torque (torque: mNm) – Maximum feedback torque during control.

control.pid(kp, ki, kd, reserved, integral_rate)
control.pid()→ Tuple[int, int, int, None, int]

Gets or sets the PID values for position and speed control.

If no arguments are given, this will return the current values.

Parameters

• kp (int) – Proportional position control constant. It is the feedback torque per degree of
error: 𝜇Nm/deg.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

59

Pybricks Modules and Examples Version v3.2.0

• ki (int) – Integral position control constant. It is the feedback torque per accumulated
degree of error: 𝜇Nm/(deg s).

• kd (int) – Derivative position (or proportional speed) control constant. It is the feedback
torque per unit of speed: 𝜇Nm/(deg/s).

• reserved – This setting is not used.

• integral_rate (Number, deg/s or Number, mm/s) – Maximum rate at which the
error integral is allowed to grow.

control.target_tolerances(speed, position)
control.target_tolerances()→ Tuple[int, int]

Gets or sets the tolerances that say when a maneuver is done.

If no arguments are given, this will return the current values.

Parameters

• speed (Number, deg/s or Number, mm/s) – Allowed deviation from zero speed be-
fore motion is considered complete.

• position (Number, deg or distance: mm) – Allowed deviation from the target before
motion is considered complete.

control.stall_tolerances(speed, time)
control.stall_tolerances()→ Tuple[int, int]

Gets or sets stalling tolerances.

If no arguments are given, this will return the current values.

Parameters

• speed (Number, deg/s or Number, mm/s) – If the controller cannot reach this speed
for some time even with maximum actuation, it is stalled.

• time (Number, ms) – How long the controller has to be below this minimum speed before
we say it is stalled.

control.scale

Number of degrees that the motor turns to complete one degree at the output of the gear train. This is the
gear ratio determined from the gears argument when initializing the motor.

Changed in version 3.2: The done(), stalled() and load() methods have been moved.

2.2.1 Initialization examples

Making the motor move back and forth

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Make the motor run clockwise at 500 degrees per second.
example_motor.run(500)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

60

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Wait for three seconds.
wait(3000)

Make the motor run counterclockwise at 500 degrees per second.
example_motor.run(-500)

Wait for three seconds.
wait(3000)

Initializing multiple motors

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize motors on port A and B.
track_motor = Motor(Port.A)
gripper_motor = Motor(Port.B)

Make both motors run at 500 degrees per second.
track_motor.run(500)
gripper_motor.run(500)

Wait for three seconds.
wait(3000)

Setting the positive direction as counterclockwise

from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Direction
from pybricks.tools import wait

Initialize a motor on port A with the positive direction as counterclockwise.
example_motor = Motor(Port.A, Direction.COUNTERCLOCKWISE)

When we choose a positive speed value, the motor now goes counterclockwise.
example_motor.run(500)

This is useful when your motor is mounted in reverse or upside down.
By changing the positive direction, your script will be easier to read,
because a positive value now makes your robot/mechanism go forward.

Wait for three seconds.
wait(3000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

61

Pybricks Modules and Examples Version v3.2.0

Using gears

from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Direction
from pybricks.tools import wait

Initialize a motor on port A with the positive direction as counterclockwise.
Also specify one gear train with a 12-tooth and a 36-tooth gear. The 12-tooth
gear is attached to the motor axle. The 36-tooth gear is at the output axle.
geared_motor = Motor(Port.A, Direction.COUNTERCLOCKWISE, [12, 36])

Make the output axle run at 100 degrees per second. The motor speed
is automatically increased to compensate for the gears.
geared_motor.run(100)

Wait for three seconds.
wait(3000)

2.2.2 Measurement examples

Measuring the angle and speed

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Start moving at 300 degrees per second.
example_motor.run(300)

Display the angle and speed 50 times.
for i in range(100):

Read the angle (degrees) and speed (degrees per second).
angle = example_motor.angle()
speed = example_motor.speed()

Print the values.
print(angle, speed)

Wait some time so we can read what is displayed.
wait(200)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

62

Pybricks Modules and Examples Version v3.2.0

Resetting the measured angle

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

Initialize a motor on port A.
example_motor = Motor(Port.A)

Reset the angle to 0.
example_motor.reset_angle(0)

Reset the angle to 1234.
example_motor.reset_angle(1234)

Reset the angle to the absolute angle.
This is only supported on motors that have
an absolute encoder. For other motors, this
will raise an error.
example_motor.reset_angle()

Getting the absolute angle

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

while True:

Get the default angle value.
angle = example_motor.angle()

Get the angle between 0 and 360.
absolute_angle = example_motor.angle() % 360

Get the angle between -180 and 179.
wrapped_angle = (example_motor.angle() + 180) % 360 - 180

Print the results.
print(angle, absolute_angle, wrapped_angle)
wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

63

Pybricks Modules and Examples Version v3.2.0

2.2.3 Movement examples

Basic usage of all run methods

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Run at 500 deg/s and then stop by coasting.
print("Demo of run")
example_motor.run(500)
wait(1500)
example_motor.stop()
wait(1500)

Run at 70% duty cycle ("power") and then stop by coasting.
print("Demo of dc")
example_motor.dc(50)
wait(1500)
example_motor.stop()
wait(1500)

Run at 500 deg/s for two seconds.
print("Demo of run_time")
example_motor.run_time(500, 2000)
wait(1500)

Run at 500 deg/s for 90 degrees.
print("Demo of run_angle")
example_motor.run_angle(500, 90)
wait(1500)

Run at 500 deg/s back to the 0 angle
print("Demo of run_target to 0")
example_motor.run_target(500, 0)
wait(1500)

Run at 500 deg/s back to the -90 angle
print("Demo of run_target to -90")
example_motor.run_target(500, -90)
wait(1500)

Run at 500 deg/s until the motor stalls
print("Demo of run_until_stalled")
example_motor.run_until_stalled(500)
print("Done")
wait(1500)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

64

Pybricks Modules and Examples Version v3.2.0

Stopping ongoing movements in different ways

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Run at 500 deg/s and then stop by coasting.
example_motor.run(500)
wait(1500)
example_motor.stop()
wait(1500)

Run at 500 deg/s and then stop by braking.
example_motor.run(500)
wait(1500)
example_motor.brake()
wait(1500)

Run at 500 deg/s and then stop by holding.
example_motor.run(500)
wait(1500)
example_motor.hold()
wait(1500)

Run at 500 deg/s and then stop by running at 0 speed.
example_motor.run(500)
wait(1500)
example_motor.run(0)
wait(1500)

Using the then argument to change how a run command stops

from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Stop
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

By default, the motor holds the position. It keeps
correcting the angle if you move it.
example_motor.run_angle(500, 360)
wait(1000)

This does exactly the same as above.
example_motor.run_angle(500, 360, then=Stop.HOLD)
wait(1000)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

65

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

You can also brake. This applies some resistance
but the motor does not move back if you move it.
example_motor.run_angle(500, 360, then=Stop.BRAKE)
wait(1000)

This makes the motor coast freely after it stops.
example_motor.run_angle(500, 360, then=Stop.COAST)
wait(1000)

2.2.4 Stall examples

Running a motor until a mechanical endpoint

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

Initialize a motor on port A.
example_motor = Motor(Port.A)

We'll use a speed of 200 deg/s in all our commands.
speed = 200

Run the motor in reverse until it hits a mechanical stop.
The duty_limit=30 setting means that it will apply only 30%
of the maximum torque against the mechanical stop. This way,
you don't push against it with too much force.
example_motor.run_until_stalled(-speed, duty_limit=30)

Reset the angle to 0. Now whenever the angle is 0, you know
that it has reached the mechanical endpoint.
example_motor.reset_angle(0)

Now make the motor go back and forth in a loop.
This will now work the same regardless of the
initial motor angle, because we always start
from the mechanical endpoint.
for count in range(10):

example_motor.run_target(speed, 180)
example_motor.run_target(speed, 90)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

66

Pybricks Modules and Examples Version v3.2.0

Centering a steering mechanism

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize a motor on port A.
example_motor = Motor(Port.A)

Please have a look at the previous example first. This example
finds two endspoints and then makes the middle the zero point.

The run_until_stalled gives us the angle at which it stalled.
We want to know this value for both endpoints.
left_end = example_motor.run_until_stalled(-200, duty_limit=30)
right_end = example_motor.run_until_stalled(200, duty_limit=30)

We have just moved to the rightmost endstop. So, we can reset
this angle to be half the distance between the two endpoints.
That way, the middle corresponds to 0 degrees.
example_motor.reset_angle((right_end - left_end) / 2)

From now on we can simply run towards zero to reach the middle.
example_motor.run_target(200, 0)

wait(1000)

2.2.5 Parallel movement examples

Using the wait argument to run motors in parallel

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

Initialize motors on port A and B.
track_motor = Motor(Port.A)
gripper_motor = Motor(Port.B)

Make the track motor start moving,
but don't wait for it to finish.
track_motor.run_angle(500, 360, wait=False)

Now make the gripper motor rotate. This
means they move at the same time.
gripper_motor.run_angle(200, 720)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

67

Pybricks Modules and Examples Version v3.2.0

Waiting for two parallel actions to complete

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize motors on port A and B.
track_motor = Motor(Port.A)
gripper_motor = Motor(Port.B)

Make both motors perform an action with wait=False
track_motor.run_angle(500, 360, wait=False)
gripper_motor.run_angle(200, 720, wait=False)

While one or both of the motors are not done yet,
do something else. In this example, just wait.
while not track_motor.done() or not gripper_motor.done():

wait(10)

print("Both motors are done!")

2.3 Tilt Sensor

class TiltSensor(port)
LEGO® Powered Up Tilt Sensor.

Parameters
port (Port) – Port to which the sensor is connected.

tilt()→ Tuple[int, int]: deg
Measures the tilt relative to the horizontal plane.

Returns
Tuple of pitch and roll angles.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

68

Pybricks Modules and Examples Version v3.2.0

2.3.1 Examples

Measuring pitch and roll

from pybricks.pupdevices import TiltSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
accel = TiltSensor(Port.A)

while True:
Read the tilt angles relative to the horizontal plane.
pitch, roll = accel.tilt()

Print the values
print("Pitch:", pitch, "Roll:", roll)

Wait some time so we can read what is printed.
wait(100)

2.4 Infrared Sensor

class InfraredSensor(port)
LEGO® Powered Up Infrared Sensor.

Parameters
port (Port) – Port to which the sensor is connected.

distance()→ int: %
Measures the relative distance between the sensor and an object using infrared light.

Returns
Distance ranging from 0% (closest) to 100% (farthest).

reflection()→ int: %
Measures the reflection of a surface using an infrared light.

Returns
Measured reflection, ranging from 0% (no reflection) to 100% (high reflection).

count()→ int
Counts the number of objects that have passed by the sensor.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

69

Pybricks Modules and Examples Version v3.2.0

Returns
Number of objects counted.

2.4.1 Examples

Measuring distance, object count, and reflection

from pybricks.pupdevices import InfraredSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
ir = InfraredSensor(Port.A)

while True:
Read all the information we can get from this sensor.
dist = ir.distance()
count = ir.count()
ref = ir.reflection()

Print the values
print("Distance:", dist, "Count:", count, "Reflection:", ref)

Move the sensor around and move your hands in front
of it to see what happens to the values.

Wait some time so we can read what is printed.
wait(200)

2.5 Color and Distance Sensor

class ColorDistanceSensor(port)
LEGO® Powered Up Color and Distance Sensor.

Parameters
port (Port) – Port to which the sensor is connected.

color()→ Color
Scans the color of a surface.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

70

Pybricks Modules and Examples Version v3.2.0

You choose which colors are detected using the detectable_colors() method. By default, it detects
Color.RED, Color.YELLOW, Color.GREEN, Color.BLUE, Color.WHITE, or Color.NONE.

Returns
Detected color.

reflection()→ int: %
Measures how much a surface reflects the light emitted by the sensor.

Returns
Measured reflection, ranging from 0% (no reflection) to 100% (high reflection).

ambient()→ int: %
Measures the ambient light intensity.

Returns
Ambient light intensity, ranging from 0% (dark) to 100% (bright).

distance()→ int: %
Measures the relative distance between the sensor and an object using infrared light.

Returns
Distance ranging from 0% (closest) to 100% (farthest).

hsv()→ Color
Scans the color of a surface.

This method is similar to color(), but it gives the full range of hue, saturation and brightness values,
instead of rounding it to the nearest detectable color.

Returns
Measured color. The color is described by a hue (0–359), a saturation (0–100), and a bright-
ness value (0–100).

detectable_colors(colors)
detectable_colors()→ Collection[Color]

Configures which colors the color() method should detect.

Specify only colors that you wish to detect in your application. This way, the full-color measurements are
rounded to the nearest desired color, and other colors are ignored. This improves reliability.

If you give no arguments, the currently chosen colors will be returned.

Parameters
colors (list or tuple) – List of Color objects: the colors that you want to detect.
You can pick standard colors such as Color.MAGENTA, or provide your own colors like
Color(h=348, s=96, v=40) for even better results. You measure your own colors with
the hsv() method.

Built-in light

This sensor has a built-in light. You can make it red, green, blue, or turn it off. If you use the sensor to measure
something afterwards, the light automatically turns back on at the default color for that sensing method.

light.on(color)
Turns on the light at the specified color.

Parameters
color (Color) – Color of the light.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

71

Pybricks Modules and Examples Version v3.2.0

light.off()

Turns off the light.

2.5.1 Examples

Measuring color

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

while True:
Read the color.
color = sensor.color()

Print the measured color.
print(color)

Move the sensor around and see how
well you can detect colors.

Wait so we can read the value.
wait(100)

Waiting for a color

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

This is a function that waits for a desired color.
def wait_for_color(desired_color):

While the color is not the desired color, we keep waiting.
while sensor.color() != desired_color:

wait(20)

Now we use the function we just created above.
while True:

Here you can make your train/vehicle go forward.

print("Waiting for red ...")
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

72

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

wait_for_color(Color.RED)

Here you can make your train/vehicle go backward.

print("Waiting for blue ...")
wait_for_color(Color.BLUE)

Measuring distance and blinking the light

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

Repeat forever.
while True:

If the sensor sees an object nearby.
if sensor.distance() <= 40:

Then blink the light red/blue 5 times.
for i in range(5):

sensor.light.on(Color.RED)
wait(30)
sensor.light.on(Color.BLUE)
wait(30)

else:
If the sensor sees nothing
nearby, just wait briefly.
wait(10)

Reading hue, saturation, value

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

while True:
The standard color() method always "rounds" the
measurement to the nearest "whole" color.
That's useful for most applications.

But you can get the original hue, saturation,
and value without "rounding", as follows:

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

73

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

color = sensor.hsv()

Print the results.
print(color)

Wait so we can read the value.
wait(500)

Changing the detectable colors

By default, the sensor is configured to detect red, yellow, green, blue, white, or no color, which suits many applications.

For better results in your application, you can measure your desired colors in advance, and tell the sensor to look only
for those colors. Be sure to measure them at the same distance and light conditions as in your final application. Then
you’ll get very accurate results even for colors that are otherwise hard to detect.

from pybricks.pupdevices import ColorDistanceSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.A)

First, decide which objects you want to detect, and measure their HSV values.
You can do that with the hsv() method as shown in the previous example.
#
Use your measurements to override the default colors, or add new colors:
Color.GREEN = Color(h=132, s=94, v=26)
Color.MAGENTA = Color(h=348, s=96, v=40)
Color.BROWN = Color(h=17, s=78, v=15)
Color.RED = Color(h=359, s=97, v=39)

Put your colors in a list or tuple.
my_colors = (Color.GREEN, Color.MAGENTA, Color.BROWN, Color.RED, Color.NONE)

Save your colors.
sensor.detectable_colors(my_colors)

color() works as usual, but now it returns one of your specified colors.
while True:

color = sensor.color()

Print the color.
print(color)

Check which one it is.
if color == Color.MAGENTA:

print("It works!")

Wait so we can read it.
wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

74

Pybricks Modules and Examples Version v3.2.0

2.6 Power Functions

The ColorDistanceSensor can send infrared signals to control Power Functions infrared receivers. You can use
this technique to control medium, large, extra large, and train motors. The infrared range is limited to about 30 cm,
depending on the angle and ambient conditions.

Figure 2.3: Powered Up ColorDistanceSensor (left), Power Functions infrared receiver (middle), and a Power Func-
tions motor (right). Here, the receiver uses channel 1 with a motor on the red port.

class PFMotor(sensor, channel, color, positive_direction=Direction.CLOCKWISE)
Control Power Functions motors with the infrared functionality of the ColorDistanceSensor.

Parameters

• sensor (ColorDistanceSensor) – Sensor object.

• channel (int) – Channel number of the receiver: 1, 2, 3, or 4.

• color (Color) – Color marker on the receiver: Color.BLUE or Color.RED

• positive_direction (Direction) – Which direction the motor should turn when you
give a positive duty cycle value.

dc(duty)
Rotates the motor at a given duty cycle (also known as “power”).

Parameters
duty (Number, %) – The duty cycle (-100.0 to 100).

stop()

Stops the motor and lets it spin freely.

The motor gradually stops due to friction.

brake()

Passively brakes the motor.

The motor stops due to friction, plus the voltage that is generated while the motor is still moving.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

75

Pybricks Modules and Examples Version v3.2.0

2.6.1 Examples

Control a Power Functions motor

from pybricks.pupdevices import ColorDistanceSensor, PFMotor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.B)

Initialize a motor on channel 1, on the red output.
motor = PFMotor(sensor, 1, Color.RED)

Rotate and then stop.
motor.dc(100)
wait(1000)
motor.stop()
wait(1000)

Rotate the other way at half speed, and then stop.
motor.dc(-50)
wait(1000)
motor.stop()

Controlling multiple Power Functions motors

from pybricks.pupdevices import ColorDistanceSensor, PFMotor
from pybricks.parameters import Port, Color, Direction
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorDistanceSensor(Port.B)

You can use multiple motors on different channels.
arm = PFMotor(sensor, 1, Color.BLUE)
wheel = PFMotor(sensor, 4, Color.RED, Direction.COUNTERCLOCKWISE)

Accelerate both motors. Only these values are available.
Other values will be rounded down to the nearest match.
for duty in [15, 30, 45, 60, 75, 90, 100]:

arm.dc(duty)
wheel.dc(duty)
wait(1000)

To make the signal more reliable, there is a short
pause between commands. So, they change speed and
stop at a slightly different time.

Brake both motors.
arm.brake()
wheel.brake()

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

76

Pybricks Modules and Examples Version v3.2.0

2.7 Color Sensor

class ColorSensor(port)
LEGO® SPIKE Color Sensor.

Parameters
port (Port) – Port to which the sensor is connected.

color(surface=True)→ Color
Scans the color of a surface or an external light source.

You choose which colors are detected using the detectable_colors() method. By default, it detects
Color.RED, Color.YELLOW, Color.GREEN, Color.BLUE, Color.WHITE, or Color.NONE.

Parameters
surface (bool) – Choose true to scan the color of objects and surfaces. Choose false to
scan the color of screens and other external light sources.

Returns
Detected color.`

reflection()→ int: %
Measures how much a surface reflects the light emitted by the sensor.

Returns
Measured reflection, ranging from 0% (no reflection) to 100% (high reflection).

ambient()→ int: %
Measures the ambient light intensity.

Returns
Ambient light intensity, ranging from 0% (dark) to 100% (bright).

Advanced color sensing

hsv(surface=True)→ Color
Scans the color of a surface or an external light source.

This method is similar to color(), but it gives the full range of hue, saturation and brightness values,
instead of rounding it to the nearest detectable color.

Parameters
surface (bool) – Choose true to scan the color of objects and surfaces. Choose false to
scan the color of screens and other external light sources.

Returns
Measured color. The color is described by a hue (0–359), a saturation (0–100), and a bright-
ness value (0–100).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

77

Pybricks Modules and Examples Version v3.2.0

detectable_colors(colors)
detectable_colors()→ Collection[Color]

Configures which colors the color() method should detect.

Specify only colors that you wish to detect in your application. This way, the full-color measurements are
rounded to the nearest desired color, and other colors are ignored. This improves reliability.

If you give no arguments, the currently chosen colors will be returned.

Parameters
colors (list or tuple) – List of Color objects: the colors that you want to detect.
You can pick standard colors such as Color.MAGENTA, or provide your own colors like
Color(h=348, s=96, v=40) for even better results. You measure your own colors with
the hsv() method.

Built-in lights

This sensor has 3 built-in lights. You can adjust the brightness of each light. If you use the sensor to measure
something, the lights will be turned on or off as needed for the measurement.

lights.on(brightness)
Turns on the lights at the specified brightness.

Parameters
brightness (Number or tuple, %) – Use a single value to set the brightness of all lights
at the same time. Use a tuple of three values to set the brightness of each light individually.

lights.off()

Turns off all the lights.

2.7.1 Examples

Measuring color and reflection

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

while True:
Read the color and reflection
color = sensor.color()
reflection = sensor.reflection()

Print the measured color and reflection.
print(color, reflection)

Move the sensor around and see how
well you can detect colors.

Wait so we can read the value.
wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

78

Pybricks Modules and Examples Version v3.2.0

Waiting for a color

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

This is a function that waits for a desired color.
def wait_for_color(desired_color):

While the color is not the desired color, we keep waiting.
while sensor.color() != desired_color:

wait(20)

Now we use the function we just created above.
while True:

Here you can make your train/vehicle go forward.

print("Waiting for red ...")
wait_for_color(Color.RED)

Here you can make your train/vehicle go backward.

print("Waiting for blue ...")
wait_for_color(Color.BLUE)

Reading reflected hue, saturation, and value

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

while True:
The standard color() method always "rounds" the
measurement to the nearest "whole" color.
That's useful for most applications.

But you can get the original hue, saturation,
and value without "rounding", as follows:
color = sensor.hsv()

Print the results.
print(color)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

79

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Wait so we can read the value.
wait(500)

Changing the detectable colors

By default, the sensor is configured to detect red, yellow, green, blue, white, or no color, which suits many applications.

For better results in your application, you can measure your desired colors in advance, and tell the sensor to look only
for those colors. Be sure to measure them at the same distance and light conditions as in your final application. Then
you’ll get very accurate results even for colors that are otherwise hard to detect.

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port, Color
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

First, decide which objects you want to detect, and measure their HSV values.
You can do that with the hsv() method as shown in the previous example.
#
Use your measurements to override the default colors, or add new colors:
Color.GREEN = Color(h=132, s=94, v=26)
Color.MAGENTA = Color(h=348, s=96, v=40)
Color.BROWN = Color(h=17, s=78, v=15)
Color.RED = Color(h=359, s=97, v=39)

Put your colors in a list or tuple.
my_colors = (Color.GREEN, Color.MAGENTA, Color.BROWN, Color.RED, Color.NONE)

Save your colors.
sensor.detectable_colors(my_colors)

color() works as usual, but now it returns one of your specified colors.
while True:

color = sensor.color()

Print the color.
print(color)

Check which one it is.
if color == Color.MAGENTA:

print("It works!")

Wait so we can read it.
wait(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

80

Pybricks Modules and Examples Version v3.2.0

Reading ambient hue, saturation, value, and color

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

Repeat forever.
while True:

Get the ambient color values. Instead of scanning the color of a surface,
this lets you scan the color of light sources like lamps or screens.
hsv = sensor.hsv(surface=False)
color = sensor.color(surface=False)

Get the ambient light intensity.
ambient = sensor.ambient()

Print the measurements.
print(hsv, color, ambient)

Point the sensor at a computer screen or colored light. Watch the color.
Also, cover the sensor with your hands and watch the ambient value.

Wait so we can read the printed line
wait(100)

Blinking the built-in lights

from pybricks.pupdevices import ColorSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

Repeat forever.
while True:

Turn on one light at a time, at half the brightness.
Do this for all 3 lights and repeat that 5 times.
for i in range(5):

sensor.lights.on([50, 0, 0])
wait(100)
sensor.lights.on([0, 50, 0])
wait(100)
sensor.lights.on([0, 0, 50])
wait(100)

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

81

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Turn all lights on at maximum brightness.
sensor.lights.on(100)
wait(500)

Turn all lights off.
sensor.lights.off()
wait(500)

Turning off the lights when the program ends

from pybricks.parameters import Port
from pybricks.pupdevices import ColorSensor
from pybricks.tools import wait

Initialize the sensor.
sensor = ColorSensor(Port.A)

def main():
Run the main code.
while True:

print(sensor.color())
wait(500)

Wrap the main code in try/finally so that the cleanup code always runs
when the program ends, even if an exception was raised.
try:

main()
finally:

The cleanup code goes here.
print("Cleaning up.")
sensor.lights.off()

2.8 Ultrasonic Sensor

class UltrasonicSensor(port)
LEGO® SPIKE Color Sensor.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

82

Pybricks Modules and Examples Version v3.2.0

Parameters
port (Port) – Port to which the sensor is connected.

distance()→ int: mm
Measures the distance between the sensor and an object using ultrasonic sound waves.

Returns
Measured distance. If no valid distance was measured, it returns 2000 mm.

presence()→ bool
Checks for the presence of other ultrasonic sensors by detecting ultrasonic sounds.

Returns
True if ultrasonic sounds are detected, False if not.

Built-in lights

This sensor has 4 built-in lights. You can adjust the brightness of each light.

lights.on(brightness)
Turns on the lights at the specified brightness.

Parameters
brightness (Number or tuple, %) – Use a single value to set the brightness of all lights
at the same time. Use a tuple of four values to set the brightness of each light individually.
The order of the lights is shown in the image above.

lights.off()

Turns off all the lights.

2.8.1 Examples

Measuring distance and switching on the lights

from pybricks.pupdevices import UltrasonicSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
eyes = UltrasonicSensor(Port.A)

while True:
Print the measured distance.
print(eyes.distance())

If an object is detected closer than 500mm:
if eyes.distance() < 500:

Turn the lights on.
eyes.lights.on(100)

else:
Turn the lights off.
eyes.lights.off()

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

83

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Wait some time so we can read what is printed.
wait(100)

Gradually change the brightness of the lights

from pybricks.pupdevices import UltrasonicSensor
from pybricks.parameters import Port
from pybricks.tools import wait, StopWatch

from umath import pi, sin

Initialize the sensor.
eyes = UltrasonicSensor(Port.A)

Initialize a timer.
watch = StopWatch()

We want one full light cycle to last three seconds.
PERIOD = 3000

while True:
The phase is where we are in the unit circle now.
phase = watch.time() / PERIOD * 2 * pi

Each light follows a sine wave with a mean of 50, with an amplitude of 50.
We offset this sine wave by 90 degrees for each light, so that all the
lights do something different.
brightness = [sin(phase + offset * pi / 2) * 50 + 50 for offset in range(4)]

Set the brightness values for all lights.
eyes.lights.on(brightness)

Wait some time.
wait(50)

2.9 Force Sensor

class ForceSensor(port)
LEGO® SPIKE Force Sensor.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

84

Pybricks Modules and Examples Version v3.2.0

Parameters
port (Port) – Port to which the sensor is connected.

force()→ float: N
Measures the force exerted on the sensor.

Returns
Measured force (up to approximately 10.00 N).

distance()→ float: mm
Measures by how much the sensor button has moved.

Returns
Movement up to approximately 8.00 mm.

pressed(force=3)→ bool
Checks if the sensor button is pressed.

Parameters
force (Number, N) – Minimum force to be considered pressed.

Returns
True if the sensor is pressed, False if it is not.

touched()→ bool
Checks if the sensor is touched.

This is similar to pressed(), but it detects slight movements of the button even when the measured force
is still considered zero.

Returns
True if the sensor is touched or pressed, False if it is not.

2.9.1 Examples

Measuring force and movement

from pybricks.pupdevices import ForceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
button = ForceSensor(Port.A)

while True:
Read all the information we can get from this sensor.
force = button.force()
dist = button.distance()
press = button.pressed()
touch = button.touched()

Print the values
print("Force", force, "Dist:", dist, "Pressed:", press, "Touched:", touch)

Push the sensor button see what happens to the values.

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

85

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Wait some time so we can read what is printed.
wait(200)

Measuring peak force

from pybricks.pupdevices import ForceSensor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the sensor.
button = ForceSensor(Port.A)

This function waits until the button is pushed. It keeps track of the maximum
detected force until the button is released. Then it returns the maximum.
def wait_for_force():

Wait for a force, by doing nothing for as long the force is nearly zero.
print("Waiting for force.")
while button.force() <= 0.1:

wait(10)

Now we wait for the release, by waiting for the force to be zero again.
print("Waiting for release.")

While we wait for that to happen, we keep reading the force and remember
the maximum force. We do this by initializing the maximum at 0, and
updating it each time we detect a bigger force.
maximum = 0
force = 10
while force > 0.1:

Read the force.
force = button.force()

Update the maximum if the measured force is larger.
if force > maximum:

maximum = force

Wait and then measure again.
wait(10)

Return the maximum force.
return maximum

Keep waiting for the sensor button to be pushed. When it is, display
the peak force and repeat.
while True:

peak = wait_for_force()
print("Released. Peak force: {0} N\n".format(peak))

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

86

Pybricks Modules and Examples Version v3.2.0

2.10 Color Light Matrix

class ColorLightMatrix(port)
LEGO® SPIKE 3x3 Color Light Matrix.

Parameters
port (Port) – Port to which the device is connected.

on(colors)
Turns the lights on.

Parameters
colors (Color or list) – If a single Color is given, then all 9 lights are set to that color.
If a list of colors is given, then each light is set to that color.

off()

Turns all lights off.

2.11 Light

class Light(port)
LEGO® Powered Up Light.

Parameters
port (Port) – Port to which the device is connected.

on(brightness=100)
Turns on the light at the specified brightness.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

87

Pybricks Modules and Examples Version v3.2.0

Parameters
brightness (Number, %) – Brightness of the light.

off()

Turns off the light.

2.11.1 Examples

Making the light blink

from pybricks.pupdevices import Light
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the light.
light = Light(Port.A)

Blink the light forever.
while True:

Turn the light on at 100% brightness.
light.on(100)
wait(500)

Turn the light off.
light.off()
wait(500)

Gradually change the brightness

from pybricks.pupdevices import Light
from pybricks.parameters import Port
from pybricks.tools import wait, StopWatch

from umath import pi, cos

Initialize the light and a StopWatch.
light = Light(Port.A)
watch = StopWatch()

Cosine pattern properties.
PERIOD = 2000
MAX = 100

Make the brightness fade in and out.
while True:

Get phase of the cosine.
phase = watch.time() / PERIOD * 2 * pi

Evaluate the brightness.
brightness = (0.5 - 0.5 * cos(phase)) * MAX

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

88

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

Set light brightness and wait a bit.
light.on(brightness)
wait(10)

2.12 Remote Control

class Remote(name=None, timeout=10000)
LEGO® Powered Up Bluetooth Remote Control.

When you instantiate this class, the hub will search for a remote and connect automatically.

The remote must be on and ready for a connection, as indicated by a white blinking light.

Parameters

• name (str) – Bluetooth name of the remote. If no name is given, the hub connects to the
first remote that it finds.

• timeout (Number, ms) – How long to search for the remote.

name(name)
name()→ str

Sets or gets the Bluetooth name of the remote.

Parameters
name (str) – New Bluetooth name of the remote. If no name is given, this method returns
the current name.

light.on(color)
Turns on the light at the specified color.

Parameters
color (Color) – Color of the light.

light.off()

Turns off the light.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

89

Pybricks Modules and Examples Version v3.2.0

buttons.pressed()→ Collection[Button]
Checks which buttons are currently pressed.

Returns
Set of pressed buttons.

2.12.1 Examples

Checking which buttons are pressed

from pybricks.pupdevices import Remote
from pybricks.parameters import Button
from pybricks.tools import wait

Connect to the remote.
my_remote = Remote()

while True:
Check which buttons are pressed.
pressed = my_remote.buttons.pressed()

Show the result.
print("pressed:", pressed)

Check a specific button.
if Button.CENTER in pressed:

print("You pressed the center button!")

Wait so we can see the result.
wait(100)

Changing the remote light color

from pybricks.pupdevices import Remote
from pybricks.parameters import Color
from pybricks.tools import wait

Connect to the remote.
remote = Remote()

while True:
Set the color to red.
remote.light.on(Color.RED)
wait(1000)

Set the color to blue.
remote.light.on(Color.BLUE)
wait(1000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

90

Pybricks Modules and Examples Version v3.2.0

Changing the light color using the buttons

from pybricks.pupdevices import Remote
from pybricks.parameters import Button, Color

def button_to_color(buttons):

Return a color depending on the button.
if Button.LEFT_PLUS in buttons:

return Color.RED
if Button.LEFT_MINUS in buttons:

return Color.GREEN
if Button.LEFT in buttons:

return Color.ORANGE
if Button.RIGHT_PLUS in buttons:

return Color.BLUE
if Button.RIGHT_MINUS in buttons:

return Color.YELLOW
if Button.RIGHT in buttons:

return Color.CYAN
if Button.CENTER in buttons:

return Color.VIOLET

Return no color by default.
return Color.NONE

Connect to the remote.
remote = Remote()

while True:
Wait until a button is pressed.
pressed = ()
while not pressed:

pressed = remote.buttons.pressed()

Convert button code to color.
color = button_to_color(pressed)

Set the remote light color.
remote.light.on(color)

Wait until all buttons are released.
while pressed:

pressed = remote.buttons.pressed()

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

91

Pybricks Modules and Examples Version v3.2.0

Using the timeout setting

You can use the timeout argument to change for how long the hub searches for the remote. If you choose None, it will
search forever.

from pybricks.pupdevices import Remote

Connect to any remote. Search forever until we find one.
my_remote = Remote(timeout=None)

print("Connected!")

If the remote was not found within the specified timeout, an OSError is raised. You can catch this exception to run
other code if the remote is not available.

from pybricks.pupdevices import Remote

try:
Search for a remote for 5 seconds.
my_remote = Remote(timeout=5000)

print("Connected!")

Here you can write code that uses the remote.

except OSError:

print("Could not find the remote.")

Here you can make your robot do something
without the remote.

Changing the name of the remote

You can change the Bluetooth name of the remote. The factory default name is Handset.

from pybricks.pupdevices import Remote

Connect to any remote.
my_remote = Remote()

Print the current name of the remote.
print(my_remote.name())

Choose a new name.
my_remote.name("truck2")

print("Done!")

You can specify this name when connecting to the remote. This lets you pick the right one if multiple remotes are
nearby.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

92

Pybricks Modules and Examples Version v3.2.0

from pybricks.pupdevices import Remote
from pybricks.tools import wait

Connect to a remote called truck2.
truck_remote = Remote("truck2", timeout=None)

print("Connected!")

wait(2000)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

93

dcmotor.html
motor.html

Pybricks Modules and Examples Version v3.2.0

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

94

tiltsensor.html
infraredsensor.html
colordistancesensor.html
pfmotor.html
colorsensor.html

Pybricks Modules and Examples Version v3.2.0

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

95

ultrasonicsensor.html
forcesensor.html
colorlightmatrix.html
light.html
remote.html

CHAPTER

THREE

IODEVICES – CUSTOM DEVICES

3.1 Powered Up Device

class PUPDevice(port)
Powered Up motor or sensor.

Parameters
port (Port) – Port to which the device is connected.

info()→ Dict
Gets information about the device.

Returns
Dictionary with information, such as the device id.

read(mode)→ Tuple
Reads values from a given mode.

Parameters
mode (int) – Device mode.

Returns
Values read from the sensor.

write(mode, data)
Writes values to the sensor. Only selected sensors and modes support this.

Parameters

• mode (int) – Device mode.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

96

Pybricks Modules and Examples Version v3.2.0

• data (tuple) – Values to be written.

3.1.1 Examples

Detecting devices

from pybricks.iodevices import PUPDevice
from pybricks.parameters import Port
from uerrno import ENODEV

Dictionary of device identifiers along with their name.
device_names = {

34: "Wedo 2.0 Tilt Sensor",
35: "Wedo 2.0 Infrared Sensor",
37: "BOOST Color Distance Sensor",
38: "BOOST Interactive Motor",
46: "Technic Large Motor",
47: "Technic Extra Large Motor",
48: "SPIKE Medium Angular Motor",
49: "SPIKE Large Angular Motor",
61: "SPIKE Color Sensor",
62: "SPIKE Ultrasonic Sensor",
63: "SPIKE Force Sensor",
75: "Technic Medium Angular Motor",
76: "Technic Large Angular Motor",

}

Make a list of known ports.
ports = [Port.A, Port.B]

On hubs that support it, add more ports.
try:

ports.append(Port.C)
ports.append(Port.D)

except AttributeError:
pass

On hubs that support it, add more ports.
try:

ports.append(Port.E)
ports.append(Port.F)

except AttributeError:
pass

Go through all available ports.
for port in ports:

Try to get the device, if it is attached.
try:

device = PUPDevice(port)
except OSError as ex:

if ex.args[0] == ENODEV:
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

97

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

No device found on this port.
print(port, ": ---")
continue

else:
raise

Get the device id
id = device.info()["id"]

Look up the name.
try:

print(port, ":", device_names[id])
except KeyError:

print(port, ":", "Unknown device with ID", id)

3.2 LEGO Wireless Protocol v3 device

Warning: This is an experimental class. It has not been well tested and may be changed in future.

class LWP3Device(hub_kind, name=None, timeout=10000)
Connects to a hub running official LEGO firmware using the LEGO Wireless Protocol v3

Parameters

• hub_kind (int) – The hub type identifier of the hub to connect to.

• name (str) – The name of the hub to connect to or None to connect to any hub.

• timeout (int) – The time, in milliseconds, to wait for a connection before raising an ex-
ception.

name(name)
name()→ str

Sets or gets the Bluetooth name of the device.

Parameters
name (str) – New Bluetooth name of the device. If no name is given, this method returns
the current name.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

98

https://lego.github.io/lego-ble-wireless-protocol-docs/
https://github.com/pybricks/technical-info/blob/master/assigned-numbers.md#hub-type-ids

Pybricks Modules and Examples Version v3.2.0

write(buf)
Sends a message to the remote hub.

Parameters
buf (bytes) – The raw binary message to send.

read()→ bytes
Retrieves the most recent message received from the remote hub.

If a message has not been received since the last read, the method will block until a message is received.

Returns
The raw binary message.

This module has classes for generic and custom input/output devices.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

99

pupdevice.html
lwp3device.html

CHAPTER

FOUR

PARAMETERS – PARAMETERS AND CONSTANTS

Constant parameters/arguments for the Pybricks API.

4.1 Button

class Button

Buttons on a hub or remote.

LEFT_DOWN

LEFT_MINUS

DOWN

RIGHT_DOWN

RIGHT_MINUS

LEFT

CENTER

RIGHT

LEFT_UP

LEFT_PLUS

UP

BEACON

RIGHT_UP

RIGHT_PLUS

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

100

Pybricks Modules and Examples Version v3.2.0

4.2 Color

class Color(h, s=100, v=100)
Light or surface color.

Parameters

• h (Number, deg) – Hue.

• s (Number, %) – Saturation.

• v (Number, %) – Brightness value.

Saturated colors

These colors have maximum saturation and brightness value. They differ only in hue.

RED: Color = Color(h=0, s=100, v=100)

ORANGE: Color = Color(h=30, s=100, v=100)

YELLOW: Color = Color(h=60, s=100, v=100)

GREEN: Color = Color(h=120, s=100, v=100)

CYAN: Color = Color(h=180, s=100, v=100)

BLUE: Color = Color(h=240, s=100, v=100)

VIOLET: Color = Color(h=270, s=100, v=100)

MAGENTA: Color = Color(h=300, s=100, v=100)

Unsaturated colors

These colors have zero hue and saturation. They differ only in brightness value.

When detecting these colors using sensors, their values depend a lot on the distance to the object. If the distance
between the sensor and the object is not constant in your robot, it is better to use only one of these colors in your
programs.

WHITE: Color = Color(h=0, s=0, v=100)

GRAY: Color = Color(h=0, s=0, v=50)

BLACK: Color = Color(h=0, s=0, v=10)

This represents dark objects that still reflect a very small amount of light.

NONE: Color = Color(h=0, s=0, v=0)

This is total darkness, with no reflection or light at all.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

101

Pybricks Modules and Examples Version v3.2.0

Making your own colors

This example shows the basics of color properties, and how to define new colors.

from pybricks.parameters import Color

You can print colors. Colors may be obtained from the Color class, or
from sensors that return color measurements.
print(Color.RED)

You can read hue, saturation, and value properties.
print(Color.RED.h, Color.RED.s, Color.RED.v)

You can make your own colors. Saturation and value are 100 by default.
my_green = Color(h=125)
my_dark_green = Color(h=125, s=80, v=30)

When you print custom colors, you see exactly how they were defined.
print(my_dark_green)

You can also add colors to the builtin colors.
Color.MY_DARK_BLUE = Color(h=235, s=80, v=30)

When you add them like this, printing them only shows its name. But you can
still read h, s, v by reading its attributes.
print(Color.MY_DARK_BLUE)
print(Color.MY_DARK_BLUE.h, Color.MY_DARK_BLUE.s, Color.MY_DARK_BLUE.v)

This example shows more advanced use cases of the Color class.

from pybricks.parameters import Color

Two colors are equal if their h, s, and v attributes are equal.
if Color.BLUE == Color(240, 100, 100):

print("Yes, these colors are the same.")

You can scale colors to change their brightness value.
red_dark = Color.RED * 0.5

You can shift colors to change their hue.
red_shifted = Color.RED >> 30

Colors are immutable, so you can't change h, s, or v of an existing object.
try:

Color.GREEN.h = 125
except AttributeError:

print("Sorry, can't change the hue of an existing color object!")

But you can override builtin colors by defining a whole new color.
Color.GREEN = Color(h=125)

You can access and store colors as class attributes, or as a dictionary.
print(Color.BLUE)
print(Color["BLUE"])

(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

102

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

print(Color["BLUE"] is Color.BLUE)
print(Color)
print([c for c in Color])

This allows you to update existing colors in a loop.
for name in ("BLUE", "RED", "GREEN"):

Color[name] = Color(1, 2, 3)

4.3 Direction

class Direction

Rotational direction for positive speed or angle values.

CLOCKWISE

A positive speed value should make the motor move clockwise.

COUNTERCLOCKWISE

A positive speed value should make the motor move counterclockwise.

positive_direction = Positive speed: Negative speed:
Direction.CLOCKWISE clockwise counterclockwise
Direction.COUNTERCLOCKWISE counterclockwise clockwise

In general, clockwise is defined by looking at the motor shaft, just like looking at a clock. Some motors have
two shafts. If in doubt, refer to the diagram in the Motor class documentation.

4.4 Icon

class Icon

Icons to display on a light matrix.

Each of the following attributes are matrices. This means you can scale icons to adjust the brightness or add
icons to make composites.

See the Making your own images section for examples.

UP: Matrix = Ellipsis

DOWN: Matrix = Ellipsis

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

103

Pybricks Modules and Examples Version v3.2.0

LEFT: Matrix = Ellipsis

RIGHT: Matrix = Ellipsis

ARROW_RIGHT_UP: Matrix = Ellipsis

ARROW_RIGHT_DOWN: Matrix = Ellipsis

ARROW_LEFT_UP: Matrix = Ellipsis

ARROW_LEFT_DOWN: Matrix = Ellipsis

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

104

Pybricks Modules and Examples Version v3.2.0

ARROW_UP: Matrix = Ellipsis

ARROW_DOWN: Matrix = Ellipsis

ARROW_LEFT: Matrix = Ellipsis

ARROW_RIGHT: Matrix = Ellipsis

HAPPY: Matrix = Ellipsis

SAD: Matrix = Ellipsis

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

105

Pybricks Modules and Examples Version v3.2.0

EYE_LEFT: Matrix = Ellipsis

EYE_RIGHT: Matrix = Ellipsis

EYE_LEFT_BLINK: Matrix = Ellipsis

EYE_RIGHT_BLINK: Matrix = Ellipsis

EYE_RIGHT_BROW: Matrix = Ellipsis

EYE_LEFT_BROW: Matrix = Ellipsis

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

106

Pybricks Modules and Examples Version v3.2.0

EYE_LEFT_BROW_UP: Matrix = Ellipsis

EYE_RIGHT_BROW_UP: Matrix = Ellipsis

HEART: Matrix = Ellipsis

PAUSE: Matrix = Ellipsis

EMPTY: Matrix = Ellipsis

FULL: Matrix = Ellipsis

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

107

Pybricks Modules and Examples Version v3.2.0

SQUARE: Matrix = Ellipsis

TRIANGLE_RIGHT: Matrix = Ellipsis

TRIANGLE_LEFT: Matrix = Ellipsis

TRIANGLE_UP: Matrix = Ellipsis

TRIANGLE_DOWN: Matrix = Ellipsis

CIRCLE: Matrix = Ellipsis

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

108

Pybricks Modules and Examples Version v3.2.0

CLOCKWISE: Matrix = Ellipsis

COUNTERCLOCKWISE: Matrix = Ellipsis

TRUE: Matrix = Ellipsis

FALSE: Matrix = Ellipsis

4.5 Port

class Port

Input and output ports:

A

B

C

D

E

F

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

109

Pybricks Modules and Examples Version v3.2.0

4.6 Side

class Side

Side of a hub or a sensor. These devices are mostly rectangular boxes with six sides:

TOP

BOTTOM

FRONT

BACK

LEFT

RIGHT

Screens or light matrices have only four sides. For those, TOP is treated the same as FRONT, and BOTTOM is treated
the same as BACK. The diagrams below define the sides for relevant devices.

Prime Hub

Inventor Hub

Essential Hub

Move Hub

Technic Hub

Changed in version 3.2: Changed which side is the front.

Tilt Sensor

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

110

Pybricks Modules and Examples Version v3.2.0

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

111

Pybricks Modules and Examples Version v3.2.0

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

112

Pybricks Modules and Examples Version v3.2.0

4.7 Stop

class Stop

Action after the motor stops.

COAST

Let the motor move freely.

COAST_SMART

Let the motor move freely. For the next relative angle maneuver, take the last target angle (instead of the
current angle) as the new starting point. This reduces cumulative errors. This will apply only if the current
angle is less than twice the configured position tolerance.

BRAKE

Passively resist small external forces.

HOLD

Keep controlling the motor to hold it at the commanded angle.

NONE

Do not decelerate when approaching the target position. This can be used to concatenate multiple motor or
drive base maneuvers without stopping. If no further commands are given, the motor will proceed to run
indefinitely at the given speed.

The following table shows how each of the basic stop types add an extra level of resistance to motion. In these
examples, m is a Motor and and d is a DriveBase. The examples also show how running at zero speed compares
to these stop types.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

113

Pybricks Modules and Examples Version v3.2.0

Type Friction Back
EMF

Speed
kept at 0

Angle kept
at target

Examples

Coast
•

m.stop()

m.
run_target(500,
90,
Stop.COAST)

Brake
• •

m.brake()

m.
run_target(500,
90,
Stop.BRAKE)

• • •
m.run(0)

d.drive(0,
0)

Hold
• • • •

m.hold()

m.
run_target(500,
90,
Stop.HOLD)

d.
straight(0)

d.
straight(100)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

114

CHAPTER

FIVE

TOOLS – TIMING TOOLS

Common tools for timing and data logging.

wait(time)
Pauses the user program for a specified amount of time.

Parameters
time (Number, ms) – How long to wait.

class StopWatch

A stopwatch to measure time intervals. Similar to the stopwatch feature on your phone.

time()→ int: ms
Gets the current time of the stopwatch.

Returns
Elapsed time.

pause()

Pauses the stopwatch.

resume()

Resumes the stopwatch.

reset()

Resets the stopwatch time to 0.

The run state is unaffected:

• If it was paused, it stays paused (but now at 0).

• If it was running, it stays running (but starting again from 0).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

115

CHAPTER

SIX

ROBOTICS – ROBOTICS AND DRIVE BASES

Robotics module for the Pybricks API.

class DriveBase(left_motor, right_motor, wheel_diameter, axle_track)
A robotic vehicle with two powered wheels and an optional support wheel or caster.

By specifying the dimensions of your robot, this class makes it easy to drive a given distance in millimeters or
turn by a given number of degrees.

Positive distances, radii, or drive speeds mean driving forward. Negative means backward.

Positive angles and turn rates mean turning right. Negative means left. So when viewed from the top, positive
means clockwise and negative means counterclockwise. If desired, you can flip this convention by reversing the
left_motor and right_motor when you initialize this class.

See the measuring section for tips to measure and adjust the diameter and axle track values.

Parameters

• left_motor (Motor) – The motor that drives the left wheel.

• right_motor (Motor) – The motor that drives the right wheel.

• wheel_diameter (Number, mm) – Diameter of the wheels.

• axle_track (Number, mm) – Distance between the points where both wheels touch the
ground.

Driving by a given distance or angle

Use the following commands to drive a given distance, or turn by a given angle.

This is measured using the internal rotation sensors. Because wheels may slip while moving, the traveled distance
and angle are only estimates.

straight(distance, then=Stop.HOLD, wait=True)
Drives straight for a given distance and then stops.

Parameters

• distance (Number, mm) – Distance to travel

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

116

Pybricks Modules and Examples Version v3.2.0

turn(angle, then=Stop.HOLD, wait=True)
Turns in place by a given angle and then stops.

Parameters

• angle (Number, deg) – Angle of the turn.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

curve(radius, angle, then=Stop.HOLD, wait=True)
Drives an arc along a circle of a given radius, by a given angle.

Parameters

• radius (Number, mm) – Radius of the circle.

• angle (Number, deg) – Angle along the circle.

• then (Stop) – What to do after coming to a standstill.

• wait (bool) – Wait for the maneuver to complete before continuing with the rest of the
program.

settings(straight_speed, straight_acceleration, turn_rate, turn_acceleration)
settings()→ Tuple[int, int, int, int]

Configures the speed and acceleration used by straight(), turn(), and curve().

If you give no arguments, this returns the current values as a tuple.

The default values are automatically configured based on your wheel diameter and axle track. They are
selected such that your robot drives at about 40% of its maximum speed.

Parameters

• straight_speed (Number, mm/s) – Straight-line speed of the robot.

• straight_acceleration (Number, mm/s2) – Straight-line acceleration and decelera-
tion of the robot.

• turn_rate (Number, deg/s) – Turn rate of the robot.

• turn_acceleration (Number, deg/s2) – Angular acceleration and deceleration of the
robot.

done()→ bool
Checks if an ongoing command or maneuver is done.

Returns
True if the command is done, False if not.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

117

Pybricks Modules and Examples Version v3.2.0

Drive forever

Use drive() to begin driving at a desired speed and steering.

It keeps going until you use stop() or change course by using drive() again. For example, you can drive until
a sensor is triggered and then stop or turn around.

drive(speed, turn_rate)
Starts driving at the specified speed and turn rate. Both values are measured at the center point between
the wheels of the robot.

Parameters

• speed (Number, mm/s) – Speed of the robot.

• turn_rate (Number, deg/s) – Turn rate of the robot.

stop()

Stops the robot by letting the motors spin freely.

Measuring

distance()→ int: mm
Gets the estimated driven distance.

Returns
Driven distance since last reset.

angle()→ int: deg
Gets the estimated rotation angle of the drive base.

Returns
Accumulated angle since last reset.

state()→ Tuple[int, int, int, int]
Gets the state of the robot.

Returns
Tuple of distance, drive speed, angle, and turn rate of the robot.

reset()

Resets the estimated driven distance and angle to 0.

stalled()→ bool
Checks if the drive base is currently stalled.

It is stalled when it cannot reach the target speed or position, even with the maximum actuation signal.

Returns
True if the drivebase is stalled, False if not.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

118

Pybricks Modules and Examples Version v3.2.0

Measuring and validating the robot dimensions

As a first estimate, you can measure the wheel_diameter and the axle_track with a ruler. Because it is hard
to see where the wheels effectively touch the ground, you can estimate the axle_track as the distance between
the midpoint of the wheels.

If you don’t have a ruler, you can use a LEGO beam to measure. The center-to-center distance of the holes is
8 mm. For some tyres, the diameter is printed on the side. For example, 62.4 x 20 means that the diameter is
62.4mm and that the width is 20 mm.

In practice, most wheels compress slightly under the weight of your robot. To verify, make your robot drive 1000
mm using my_robot.straight(1000) and measure how far it really traveled. Compensate as follows:

• If your robot drives not far enough, decrease the wheel_diameter value slightly.

• If your robot drives too far, increase the wheel_diameter value slightly.

Motor shafts and axles bend slightly under the load of the robot, causing the ground contact point of the wheels to
be closer to the midpoint of your robot. To verify, make your robot turn 360 degrees using my_robot.turn(360)
and check that it is back in the same place:

• If your robot turns not far enough, increase the axle_track value slightly.

• If your robot turns too far, decrease the axle_track value slightly.

When making these adjustments, always adjust the wheel_diameter first, as done above. Be sure to test both
turning and driving straight after you are done.

Using the DriveBase motors individually

After creating a DriveBase object, you can still use its two motors individually. If you start one motor, the other
motor will automatically stop. Likewise, if a motor is already running and you make the drive base move, the
original maneuver is cancelled and the drive base will take over.

Advanced settings

The settings() method is used to adjust commonly used settings like the default speed and acceleration for
straight maneuvers and turns. Use the following attributes to adjust more advanced control settings.

You can only change the settings while the robot is stopped. This is either before you begin driving or after you
call stop().

distance_control

The traveled distance and drive speed are controlled by a PID controller. You can use this attribute to change
its settings. See the motor control attribute for an overview of available methods. The distance_control
attribute has the same functionality, but the settings apply to every millimeter driven by the drive base,
instead of degrees turned by one motor.

heading_control

The robot turn angle and turn rate are controlled by a PID controller. You can use this attribute to change
its settings. See the motor control attribute for an overview of available methods. The heading_control
attribute has the same functionality, but the settings apply to every degree of rotation of the whole drive
base (viewed from the top) instead of degrees turned by one motor.

Changed in version 3.2: The done() and stalled() methods have been moved.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

119

Pybricks Modules and Examples Version v3.2.0

6.1 Examples

6.1.1 Driving straight and turning in place

from pybricks.pupdevices import Motor
from pybricks.parameters import Port, Direction
from pybricks.robotics import DriveBase

Initialize both motors. In this example, the motor on the
left must turn counterclockwise to make the robot go forward.
left_motor = Motor(Port.A, Direction.COUNTERCLOCKWISE)
right_motor = Motor(Port.B)

Initialize the drive base. In this example, the wheel diameter is 56mm.
The distance between the two wheel-ground contact points is 112mm.
drive_base = DriveBase(left_motor, right_motor, wheel_diameter=56, axle_track=112)

Drive forward by 500mm (half a meter).
drive_base.straight(500)

Turn around clockwise (180 degrees)
drive_base.turn(180)

Drive forward again to drive back.
drive_base.straight(500)

Turn around counterclockwise.
drive_base.turn(-180)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

120

CHAPTER

SEVEN

GEOMETRY – GEOMETRY AND ALGEBRA

class Matrix(rows)
Mathematical representation of a matrix. It supports addition (A + B), subtraction (A - B), and matrix multi-
plication (A * B) for matrices of compatible size.

It also supports scalar multiplication (c * A or A * c) and scalar division (A / c).

A Matrix object is immutable.

Parameters
rows (list) – List of rows. Each row is itself a list of numbers.

T

Returns a new Matrix that is the transpose of the original.

shape

Returns a tuple (m, n), where m is the number of rows and n is the number of columns.

vector(x, y)→ Matrix
vector(x, y, z)→ Matrix

Convenience function to create a Matrix with the shape (2, 1) or (3, 1).

Parameters

• x (float) – x-coordinate of the vector.

• y (float) – y-coordinate of the vector.

• z (float) – z-coordinate of the vector (optional).

Returns
A matrix with the shape of a column vector.

class Axis

Unit axes of a coordinate system.

X = vector(1, 0, 0)

Y = vector(0, 1, 0)

Z = vector(0, 0, 1)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

121

Pybricks Modules and Examples Version v3.2.0

7.1 Reference frames

The Pybricks module and this documentation use the following conventions:

• X: Positive means forward. Negative means backward.

• Y: Positive means to the left. Negative means to the right.

• Z: Positive means upward. Negative means downward.

To make sure that all hub measurements (such as acceleration) have the correct value and sign, you can specify how
the hub is mounted in your creation. This adjust the measurements so that it is easy to see how your robot is moving,
rather than how the hub is moving.

For example, the hub may be mounted upside down in your design. If you configure the settings as shown in Figure 7.1,
the hub measurements will be adjusted accordingly. This way, a positive acceleration value in the X direction means
that your robot accelerates forward, even though the hub accelerates backward.

Figure 7.1: How to configure the top_side and front_side settings for three different robot designs. The same
technique can be applied to other hubs and other creations, by noting which way the top and front Side of the hub are
pointing. The example on the left is the default configuration.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

122

CHAPTER

EIGHT

SIGNALS AND UNITS

Many commands allow you to specify arguments in terms of well-known physical quantities. This page gives an
overview of each quantity and its unit.

8.1 Numbers

Number

Numbers can be represented as integers or floating point values:

• Integers (int) are whole numbers like 15 or -123.

• Floating point values (float) are decimal numbers like 3.14 or -123.45.

If you see Number as the argument type, both int and float may be used.

For example, wait(15) and wait(15.75) are both allowed. In most functions, however, your input value will
be truncated to a whole number anyway. In this example, either command makes the program pause for just 15
milliseconds.

Note: The BOOST Move hub doesn’t support floating point numbers due to limited system resources. Only
integers can be used on that hub.

alias of Union[int, float]

8.2 Time

8.2.1 time: ms

All time and duration values are measured in milliseconds (ms).

For example, the duration of motion with run_time, and the duration of wait are specified in milliseconds.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

123

Pybricks Modules and Examples Version v3.2.0

8.3 Angles and angular motion

8.3.1 angle: deg

All angles are measured in degrees (deg). One full rotation corresponds to 360 degrees.

For example, the angle values of a Motor or the GyroSensor are expressed in degrees.

8.3.2 rotational speed: deg/s

Rotational speed, or angular velocity describes how fast something rotates, expressed as the number of degrees per
second (deg/s).

For example, the rotational speed values of a Motor or the GyroSensor are expressed in degrees per second.

While we recommend working with degrees per second in your programs, you can use the following table to convert
between commonly used units.

deg/s rpm
1 deg/s = 1 1/6=0.167
1 rpm = 6 1

8.3.3 rotational acceleration: deg/s2

Rotational acceleration, or angular acceleration describes how fast the rotational speed changes. This is expressed as
the change of the number of degrees per second, during one second (deg/s2). This is also commonly written as 𝑑𝑒𝑔/𝑠2.

For example, you can adjust the rotational acceleration setting of a Motor to change how smoothly or how quickly it
reaches the constant speed set point.

8.4 Distance and linear motion

8.4.1 distance: mm

Distances are expressed in millimeters (mm) whenever possible.

For example, the distance value of the UltrasonicSensor is measured in millimeters.

While we recommend working with millimeters in your programs, you can use the following table to convert between
commonly used units.

mm cm inch
1 mm = 1 0.1 0.0394
1 cm = 10 1 0.394
1 inch = 25.4 2.54 1

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

124

Pybricks Modules and Examples Version v3.2.0

8.4.2 dimension: mm

Dimensions are expressed in millimeters (mm), just like distances.

For example, the diameter of a wheel is measured in millimeters.

8.4.3 speed: mm/s

Linear speeds are expressed as millimeters per second (mm/s).

For example, the speed of a robotic vehicle is expressed in mm/s.

8.4.4 linear acceleration: mm/s2

Linear acceleration describes how fast the speed changes. This is expressed as the change of the millimeters per second,
during one second (mm/s2). This is also commonly written as 𝑚𝑚/𝑠2.

For example, you can adjust the acceleration setting of a DriveBase to change how smoothly or how quickly it reaches
the constant speed set point.

8.5 Approximate and relative units

8.5.1 percentage: %

Some signals do not have specific units. They range from a minimum (0%) to a maximum (100%). Specifics type of
percentages are relative distances or brightness.

Another example is the sound volume, which ranges from 0% (silent) to 100% (loudest).

8.5.2 relative distance: %

Some distance measurements do not provide an accurate value with a specific unit, but they range from very close (0%)
to very far (100%). These are referred to as relative distances.

For example, the distance value of the InfraredSensor is a relative distance.

8.5.3 brightness: %

The perceived brightness of a light is expressed as a percentage. It is 0% when the light is off and 100% when the light
is fully on. When you choose 50%, this means that the light is perceived as approximately half as bright to the human
eye.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

125

Pybricks Modules and Examples Version v3.2.0

8.6 Force and torque

8.6.1 force: N

Force values are expressed in newtons (N).

While we recommend working with newtons in your programs, you can use the following table to convert to and from
other units.

mN N lbf
1 mN = 1 0.001 2.248 · 10−4

1 N = 1000 1 0.2248
1 lbf = 4448 4.448 1

8.6.2 torque: mNm

Torque values are expressed in millinewtonmeter (mNm) unless stated otherwise.

8.7 Electricity

8.7.1 voltage: mV

Voltages are expressed in millivolt (mV).

For example, you can check the voltage of the battery.

8.7.2 current: mA

Electrical currents are expressed in milliampere (mA).

For example, you can check the current supplied by the battery.

8.7.3 energy: J

Stored energy or energy consumption can be expressed in Joules (J).

8.7.4 power: mW

Power is the rate at which energy is stored or consumed. It is expressed in milliwatt (mW).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

126

Pybricks Modules and Examples Version v3.2.0

8.8 Ambient environment

8.8.1 frequency: Hz

Sound frequencies are expressed in Hertz (Hz).

For example, you can choose the frequency of a beep to change the pitch.

8.8.2 temperature: °C

Temperature is measured in degrees Celcius (°C). To convert to degrees Fahrenheit (°F) or Kelvin (K), you can use the
following conversion formulas:

∘𝐹 = ∘𝐶 · 9
5 + 32.

𝐾 = ∘𝐶 + 273.15.

8.8.3 hue: deg

Hue of a color (0-359 degrees).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

127

CHAPTER

NINE

BUILT-IN CLASSES AND FUNCTIONS

The classes and functions shown on this page can be used without importing anything.

9.1 Input and output

input()→ str
input(prompt)→ str

Gets input from the user in the terminal window. It waits until the user presses Enter.

Parameters
prompt (str) – If given, this is printed in the terminal window first. This can be used to ask a
question so the user knows what to type.

Returns
Everything the user typed before pressing Enter.

print(*objects, sep=' ', end='\n', file=usys.stdin)
Prints text or other objects in the terminal window.

Parameters
objects – Zero or more objects to print.

Keyword Arguments

• sep (str) – This is printed between objects, if there is more than one.

• end (str) – This is printed after the last object.

• file (FileIO) – By default, the result is printed in the terminal window. This argument lets
you print it to a file instead, if files are supported.

9.2 Basic types

class bool()

class bool(x)
Creates a boolean value, which is either True or False.

The input value is converted using the standard truth testing procedure. If no input is given, it is assumed to be
False.

Parameters
x – Value to be converted.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

128

Pybricks Modules and Examples Version v3.2.0

Returns
Result of the truth-test.

class complex(string)
class complex(a=0, b=0)

Creates a complex number from a string or from a pair of numbers.

If a string is given, it must be of the form '1+2j'. If a pair of numbers is provided, the result is computed as: a
+ b * j.

Parameters

• string (str) – A string of the form '1+2j' .

• a (float or complex) – A real-valued or complex number.

• b (float or complex) – A real-valued or complex number.

Returns
The resulting complex number.

class dict(**kwargs)
class dict(mapping, **kwargs)
class dict(iterable, **kwargs)

Creates a dictionary object.

See the standard Python documentation for a comprehensive reference with examples.

class float(x=0.0)
Creates a floating point number from a given object.

Parameters
x (int or float or str) – Number or string to be converted.

class int(x=0)
Creates an integer.

Parameters
x (int or float or str) – Object to be converted.

to_bytes(length, byteorder)→ bytes
Get a bytes representation of the integer.

Parameters

• length (int) – How many bytes to use.

• byteorder (str) – Choose "big" to put the most significant byte first. Choose "little"
to put the least significant byte first.

Returns
Byte sequence that represents the integer.

classmethod from_bytes(bytes, byteorder)→ int
Convert a byte sequence to the number it represents.

Parameters

• bytes (bytes) – The bytes to convert.

• byteorder (str) – Choose "big" if the most significant byte is the first element. Choose
"little" if the least significant byte is the first element.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

129

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Pybricks Modules and Examples Version v3.2.0

Returns
The number represented by the bytes.

class object

Creates a new, featureless object.

class type(object)
Gets the type of an object. This can be used to check if an object is an instance of a particular class.

Parameters
object – Object of which to check the type.

9.3 Sequences

class bytearray()

class bytearray(integer)
class bytearray(iterable)
class bytearray(string)

Creates a new bytearray object, which is a sequence of integers in the range 0 ≤ 𝑥 ≤ 255. This object is
mutable, which means that you can change its contents after you create it.

If no argument is given, this creates an empty bytearray object.

Parameters

• integer (int) – If the argument is a single integer, this creates a bytearray object of
zeros. The argument specifies how many.

• iterable (iter) – If the argument is a bytearray, bytes object, or some other iterable
of integers, this creates a bytearray object with the same byte sequence as the argument.

• string (str) – If the argument is a string, this creates a bytearray object containing the
encoded string.

class bytes()

class bytes(integer)
class bytes(iterable)
class bytes(string, encoding)

Creates a new bytes object, which is a sequence of integers in the range 0 ≤ 𝑥 ≤ 255. This object is immutable,
which means that you cannot change its contents after you create it.

If no argument is given, this creates an empty bytes object.

Parameters

• integer (int) – If the argument is a single integer, this creates a bytes object of zeros.
The argument specifies how many.

• iterable (iter) – If the argument is a bytearray, bytes object, or some other iterable
of integers, this creates a bytes object with the same byte sequence as the argument.

• string (str) – If the argument is a string, this creates a bytes object containing the encoded
string.

• encoding (str) – Specifies which encoding to use for the string argument. Only "utf-8"
is supported.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

130

Pybricks Modules and Examples Version v3.2.0

len(s)→ int
Gets the length (the number of items) of an object.

Parameters
s (Sequence) – The sequence of which to get the length.

Returns
The length.

class list()

class list(iterable)
Creates a new list. If no argument is given, this creates an empty list object.

A list is mutable, which means that you can change its contents after you create it.

Parameters
iterable (iter) – Iterable from which to build the list.

class slice()

Creating instances of this class is not supported.

Use indexing syntax instead. For example: a[start:stop:step] or a[start:stop, i].

class str()

class str(object)
class str(object, encoding)

Gets the string representation of an object.

If no argument is given, this creates an empty str object.

Parameters

• object – If only this argument is given, this returns the stirng representation of the object.

• encoding (str) – If the first argument is a bytearray or bytes object and the encoding
argument is "utf-8", this will decode the byte data to get a string representation.

class tuple()

class tuple(iterable)
Creates a new tuple. If no argument is given, this creates an empty tuple object.

A tuple is immutable, which means that you cannot change its contents after you create it.

Parameters
iterable (iter) – Iterable from which to build the tuple.

9.4 Iterators

all(x)→ bool
Checks if all elements of the iterable are true.

Equivalent to:

def all(x):
for element in x:

if not element:
return False

return True

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

131

Pybricks Modules and Examples Version v3.2.0

Parameters
x (Iterable) – The iterable to be checked.

Returns
True if the iterable x is empty or if all elements are true. Otherwise False.

any(x)→ bool
Checks if at least one elements of the iterable is true.

Equivalent to:

def any(x):
for element in x:

if element:
return True

return False

Parameters
x (Iterable) – The iterable to be checked.

Returns
True if at least one element in x is true. Otherwise False.

class enumerate(iterable, start=0)
Enumerates an existing iterator by adding a numeric index.

This function is equivalent to:

def enumerate(sequence, start=0):
n = start
for elem in sequence:

yield n, elem
n += 1

iter(object)→ Iterator
Gets the iterator of the object if available.

Parameters
object – Object for which to get the iterator.

Returns
The iterator.

map(function, iterable)→ Iterator
map(function, iterable1, iterable2...) → Iterator

Creates a new iterator that applies the given function to each item in the given iterable and yields the results.

Parameters

• function (callable) – Function that computes a result for one item in the iterable(s). The
number of arguments to this function must match the number of iterables given.

• iterable (iter) – One or more source interables from which to draw data. With multiple
iterables, the iterator stops when the shortest iterable is exhausted.

Returns
The new, mapped iterator.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

132

Pybricks Modules and Examples Version v3.2.0

next(iterator)→ Any
Retrieves the next item from the iterator by calling its __next__() method.

Parameters
iterator (iter) – Initialized generator object from which to draw the next value.

Returns
The next value from the generator.

class range(stop)
class range(start, stop)
class range(start, stop, step)

Creates a generator that yields values from start up to stop, with increments of step.

Parameters

• start (int) – Starting value. Defaults to 0 if only one argument is given.

• stop (int) – Endpoint. This value is not included.

• step (int) – Increment between values. Defaults to 1 if only one or two arguments are
given.

reversed(seq)→ Iterator
Gets an iterator that yields the values from the sequence in the reverse, if supported.

Parameters
seq – Sequence from which to draw samples.

Returns
Iterator that yields values in reverse order, starting with the last value.

sorted(iterable: Iterable, key=None, reverse=False)→ List
Sorts objects.

Parameters

• iterable (iter) – Objects to be sorted. This can also be a generator that yield a finite
number of objects.

• key (callable) – Function def(item) -> int that maps an object to a numerical value.
This is used to figure out the order of the sorted items.

• reverse (bool) – Whether to sort in reverse, putting the highest value first.

Returns
A new list with the sorted items.

zip(iter_a, iter_b, ...) → Iterable[Tuple]
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted.

With a single iterable argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator.

This functionality is equivalent to:

def zip(*iterables):
sentinel = object()
iterators = [iter(it) for it in iterables]
while iterators:

result = []
(continues on next page)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

133

Pybricks Modules and Examples Version v3.2.0

(continued from previous page)

for it in iterators:
elem = next(it, sentinel)
if elem is sentinel:

return
result.append(elem)

yield tuple(result)

Parameters

• iter_a (iter) – The first iterable. This provides the first value for each of the yielded tuples.

• iter_b (iter) – The second iterable. This provides the second value in each of the yielded
tuples. And so on.

Returns
A new iterator that yields tuples containing the values of the individual iterables.

9.5 Conversion functions

bin(x)→ str
Converts an integer to its binary representation. The result is a string prefixed with 0b. The result is a valid
Python expression. For example, bin(5) gives "0b101".

Parameters
x (int) – Value to be converted.

Returns
A string representing the binary form of the input.

chr(x)→ str
Returns the string representing a character whose Unicode code is the integer x. This is the inverse of ord().
For example, chr(97) gives "a".

Parameters
x (int) – Value to be converted (0-255).

Returns
A string with one character, corresponding to the given Unicode value.

hex(x)→ str
Converts an integer to its hexadecimal representation. The result is a lowercase string prefixed with 0x. The
result is a valid Python expression. For example, hex(25) gives "0x19".

Parameters
x (int) – Value to be converted.

Returns
A string representing the hexadecimal form of the input.

oct(x)→ str
Converts an integer to its octal representation. The result is a string prefixed with 0o. The result is a valid Python
expression. For example, oct(25) gives "0o31".

Parameters
x (int) – Value to be converted.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

134

Pybricks Modules and Examples Version v3.2.0

Returns
A string representing the octal form of the input.

ord(c)→ int
Converts a string consisting of one Unicode character to the corresponding number. This is the inverse of chr().

Parameters
c (str) – Character to be converted.

Returns
Number that represents the character (0–255).

repr(object)→ str
Gets the string that represents an object.

Parameters
x (object) – Object to be converted.

Returns
String representation implemented by the object’s __repr__ method.

9.6 Math functions

See also umath for floating point math operations.

abs(x)→ Any
Returns the absolute value of a number.

The argument may be an integer, a floating point number, or any object implementing __abs__(). If the argu-
ment is a complex number, its magnitude is returned.

Parameters
x (Any) – The value.

Returns
Absolute value of x.

divmod(a, b)→ Tuple[int, int]
Gets the quotient and remainder for dividing two integers.

See the standard Python divmod documentation for the expected behavior when a or b are floating point numbers
instead.

Parameters

• a (int) – Numerator.

• b (int) – Denominator.

Returns
A tuple with the quotient a // b and the remainder a % b.

max(iterable)→ Any
max(arg1, arg2,) → Any

Gets the object with largest value.

The argument may be a single iterable, or any number of objects.

Returns
The object with the largest value.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

135

https://docs.python.org/3/library/functions.html#divmod

Pybricks Modules and Examples Version v3.2.0

min(iterable)→ Any
min(arg1, arg2,) → Any

Gets the object with smallest value.

The argument may be a single iterable, or any number of objects.

Returns
The object with the smallest value.

pow(base, exp)→ Number
Raises the base to the given exponent: baseexp.

This is the same as doing base ** exp.

Parameters

• base (Number) – The base.

• exp (Number) – The exponent.

Returns
The result.

round(number)→ int
round(number, ndigits)→ float

Round a number to a given number of digits after the decimal point.

If ndigits is omitted or None, it returns the nearest integer.

Rounding with one or more digits after the decimal point will not always truncate trailing zeros. To print numbers
nicely, format strings instead:

print two decimal places
print('my number: %.2f' % number) print('my number:
{:.2f}'.format(number))

Parameters

• number (float) – The number to be rounded.

• ndigits (int) – The number of digits remaining after the decimal point.

sum(iterable)→ Number
sum(iterable, start)→ Number

Sums the items from the iterable and the start value.

Parameters

• iterable (iter) – Values to be summed, starting with the first value.

• start (Number) – Value added to the total.

Returns
The total sum.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

136

Pybricks Modules and Examples Version v3.2.0

9.7 Runtime functions

eval(expression)→ Any
eval(expression, globals)→ Any
eval(expression, globals, locals)→ Any

Evaluates the result of an expression.

Syntax errors are reported as exceptions.

Parameters

• expression (str) – Expression to evaluate result of.

• globals (dict) – If given, this controls what functions are available for use in the expres-
sion. By default the global scope is accessible.

• locals (dict) – If given, this controls what functions are available for use in the expression.
Defaults to the same as globals.

Returns
The value obtained by executing the expression.

exec(expression)
exec(expression, globals)→ None
exec(expression, globals, locals)→ None

Executes MicroPython code.

Syntax errors are reported as exceptions.

Parameters

• expression (str) – Code to be executed.

• globals (dict) – If given, this controls what functions are available for use in the expres-
sion. By default the global scope is accessible.

• locals (dict) – If given, this controls what functions are available for use in the expression.
Defaults to the same as globals.

globals()→ dict
Gets a dictionary representing the current global symbol table.

Returns
The dictionary of globals.

hash(object)→ int
Gets the hash value of an object, if the object supports it.

Parameters
object – Object for which to get a hash value.

Returns
The hash value.

help()

help(object)→ None
Get information about an object.

If no arguments are given, this function prints instructions to operate the REPL. If the argument is "modules",
it prints the available modules.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

137

Pybricks Modules and Examples Version v3.2.0

Parameters
object – Object for which to print help information.

id(object)→ int
Gets the identity of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime.

Parameters
object – Object of which to get the identifier.

Returns
The identifier.

locals()→ dict
Gets a dictionary representing the current local symbol table.

Returns
The dictionary of locals.

9.8 Class functions

callable(object)→ bool
Checks if an object is callable.

Parameters
object – Object to check.

Returns
True if the object argument appears callable, False if not.

dir()→ List[str]
dir(object)→ List[str]

Gets a list of attributes of an object.

If no object argument is given, this function gets the list of names in the current local scope.

Parameters
object – Object to check for valid attributes.

Returns
List of object attributes or list of names in current local scope.

getattr(object, name)→ Any
getattr(object, name, default)→ Any

Looks up the attribute called name in the given object.

Parameters

• object – Object in which to look for the attribute.

• name (str) – Name of the attribute.

• default – Object to return if the attribute is not found.

Returns
Returns the value of the named attribute.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

138

Pybricks Modules and Examples Version v3.2.0

hasattr(object, name)→ bool
Checks if an attribute exists on an object.

Parameters

• object – Object in which to look for the attribute.

• name (str) – Name of the attribute.

Returns
True if an attribute by that name exists, False if not.

isinstance(object, classinfo)→ bool
Checks if an object is an instance of a certain class.

Parameters

• object – Object to check the type of.

• classinfo (type or tuple) – Class information.

Returns
True if the object argument is an instance of the classinfo argument, or of a subclass thereof.

issubclass(cls, classinfo)→ bool
Checks if one class is a subclass of another class.

Parameters

• cls – Class type.

• classinfo (type or tuple) – Class information.

Returns
True if cls is a subclass of classinfo.

setattr(object, name, value)
Assigns a value to an attribute, provided that the object allows it.

This is the counterpart of getattr().

Parameters

• object – Object in which to store the attribute.

• name (str) – Name of the attribute.

• value – Value to store.

super()→ type
super(type)→ type
super(type, object_or_type)→ type

Gets an object that delegates method calls to a parent, or a sibling class of the given type.

Returns
The matching super() object.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

139

Pybricks Modules and Examples Version v3.2.0

9.9 Method decorators

@classmethod

Transforms a method into a class method.

@staticmethod

Transforms a method into a static method.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

140

CHAPTER

TEN

EXCEPTIONS AND ERRORS

This section lists all available exceptions in alphabetical order.

class ArithmeticError

The base class for those built-in exceptions that are raised for various arithmetic errors.

class AssertionError

Raised when an assert statement fails.

class AttributeError

Raised when an attribute reference or assignment fails.

class BaseException

The base class for all built-in exceptions.

It is not meant to be directly inherited by user-defined classes (for that, use Exception).

class EOFError

Raised when the input() function hits an end-of-file condition (EOF) without reading any data.

class Exception

All built-in exceptions are derived from this class.

All user-defined exceptions should also be derived from this class.

class GeneratorExit

Raised when a generator or coroutine is closed.

class ImportError

Raised when the import statement is unable to load a module.

class IndentationError

Base class for syntax errors related to incorrect indentation.

class IndexError

Raised when a sequence subscript is out of range.

class KeyboardInterrupt

Raised when the user hits the interrupt key (normally Ctrl C).

class KeyError

Raised when a mapping (dictionary) key is not found in the set of existing keys.

class LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

141

Pybricks Modules and Examples Version v3.2.0

class MemoryError

Raised when an operation runs out of memory.

class NameError

Raised when a local or global name is not found.

class NotImplementedError

In user defined base classes, abstract methods should raise this exception when they require derived classes to
override the method, or while the class is being developed to indicate that the real implementation still needs to
be added.

class OSError

This exception is raised by the firmware, which is the Operating System that runs on the hub. For example, it
raises an OSError if you call Motor(Port.A) when there is no motor on port A.

errno: int

Specifies which kind of OSError occurred, as listed in the uerrno module.

class OverflowError

Raised when the result of an arithmetic operation is too large to be represented.

class RuntimeError

Raised when an error is detected that doesn’t fall in any of the other categories.

The associated value is a string indicating what precisely went wrong.

class StopIteration

Raised by built-in function next() and an iterator’s __next__()method to signal that there are no further items
produced by the iterator.

Generator functions should return instead of raising this directly.

class SyntaxError

Raised when the parser encounters a syntax error.

class SystemExit

Raised when you press the stop button on the hub or in the Pybricks Code app.

class TypeError

Raised when an operation or function is applied to an object of inappropriate type.

class ValueError

Raised when an operation or function receives an argument that has the right type but an inappropriate value.
This is used when the situation is not described by a more precise exception such as IndexError.

class ZeroDivisionError

Raised when the second argument of a division or modulo operation is zero.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

142

Pybricks Modules and Examples Version v3.2.0

10.1 Examples

10.1.1 Debugging in the REPL terminal

from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

Initialize the motor.
test_motor = Motor(Port.A)

Start moving at 500 deg/s.
test_motor.run(500)

If you click on the terminal window and press CTRL+C,
you can continue debugging in this terminal.
wait(5000)

You can also do this to exit the script and enter the
terminal. Variables in the global scope are still available.
raise KeyboardInterrupt

For example, you can copy the following line to the terminal
to get the angle, because test_motor is still available.
test_motor.angle()

10.1.2 Running code when the stop button is pressed

from pybricks.tools import wait

print("Started!")

try:

Run your script here as you normally would. In this
example we just wait forever and do nothing.
while True:

wait(1000)

except SystemExit:
This code will run when you press the stop button.
This can be useful to "clean up", such as to move
the motors back to their starting positions.
print("You pressed the stop button!")

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

143

Pybricks Modules and Examples Version v3.2.0

10.1.3 Detecting devices using OSError

from pybricks.pupdevices import Motor
from pybricks.parameters import Port

from uerrno import ENODEV

try:
Try to initialize a motor.
my_motor = Motor(Port.A)

If all goes well, you'll see this message.
print("Detected a motor.")

except OSError as ex:
If an OSError was raised, we can check what
kind of error this was, like ENODEV.
if ex.errno == ENODEV:

ENODEV is short for "Error, no device."
print("There is no motor this port.")

else:
print("Another error occurred.")

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

144

CHAPTER

ELEVEN

MICROPYTHON – MICROPYTHON INTERNALS

Access and control MicroPython internals.

const(value)→ Any
Declares the value as a constant, which makes your code more efficient.

To reduce memory usage further, prefix its name with an underscore (_ORANGES). This constant can only be used
within the same file.

If you want to import the value from another module, use a name without an underscore (APPLES). This uses a
bit more memory.

Parameters
value (int or float or str or tuple) – The literal to be made constant.

Returns
The constant value.

heap_lock()

Locks the heap. When locked, no memory allocation can occur. A MemoryError will be raised if any heap
allocation is attempted.

heap_unlock()→ int
Unlocks the heap. Memory allocation is now allowed again.

If heap_lock() was called multiple times, heap_unlock() must be called the same number of times to make
the heap available again.

Returns
The lock depth after unlocking. It is 0 once it is unlocked.

kbd_intr(chr)
Sets the character that triggers a KeyboardInterrupt exception when you type it in the input window. By
default it is set to 3, which corresponds to pressing Ctrl C.

Parameters
chr (int) – Character that should raise the KeyboardInterrupt. Choose -1 to disable this
feature.

mem_info()

mem_info(verbose)→ None
Prints information about stack and heap memory usage.

Parameters
verbose – If any value is given, it also prints out the entire heap. This indicates which blocks
are used and which are free.

opt_level()→ int

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

145

Pybricks Modules and Examples Version v3.2.0

opt_level(level: int)→ None
Sets the optimization level for code compiled on the hub:

0. Assertion statements are enabled. The built-in __debug__ variable is True. Script line numbers are saved,
so they can be reported when an Exception occurs.

1. Assertions are ignored and __debug__ is False. Script line numbers are saved.

2. Assertions are ignored and __debug__ is False. Script line numbers are saved.

3. Assertions are ignored and __debug__ is False. Script line numbers are not saved.

This applies only to code that you run in the REPL, because regular scripts are already compiled before they are
sent to the hub.

Parameters
level (int) – The level to be set.

Returns
If no argument is given, this returns the current optimization level.

qstr_info()

qstr_info(verbose)→ None
Prints how many strings are interned and how much RAM they use.

MicroPython uses string interning to save both RAM and ROM. This avoids having to store duplicate copies of
the same string.

Parameters
verbose – If any value is given, it also prints out the names of all RAM-interned strings.

stack_use()→ int
Checks the amount of stack that is being used. This can be used to compute differences in stack usage at different
points in a script.

Returns
The amount of stack in use.

11.1 Examples

11.1.1 Using constants for efficiency

from micropython import const

This value can be used here. Other files can import it too.
APPLES = const(123)

These values can only be used within this file.
_ORANGES = const(1 << 8)
_BANANAS = const(789 + _ORANGES)

You can read the constants as normal values. The compiler
will just insert the numeric values for you.
fruit = APPLES + _ORANGES + _BANANAS
print(fruit)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

146

Pybricks Modules and Examples Version v3.2.0

11.1.2 Checking free RAM

from micropython import mem_info

Print memory usage.
mem_info()

This prints information in the format shown below. In this example for the SPIKE Prime Hub, there are 257696 bytes
(251 KB) worth of memory remaining for the variables in your code.

stack: 372 out of 40184
GC: total: 258048, used: 352, free: 257696
No. of 1-blocks: 4, 2-blocks: 2, max blk sz: 8, max free sz: 16103

11.1.3 Getting more memory statistics

from micropython import const, opt_level, mem_info, qstr_info, stack_use

Get stack at start.
stack_start = stack_use()

Print REPL compiler optimization level.
print("level", opt_level())

Print memory usage.
mem_info()

Print memory usage and a memory map.
mem_info(True)

Print interned string information.
qstr_info()

Print interned string information and their names.
APPLES = const(123)
_ORANGES = const(456)
qstr_info(True)

def test_stack():
return stack_use()

Check the stack.
print("Stack diff: ", test_stack() - stack_start)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

147

CHAPTER

TWELVE

UERRNO – ERROR CODES

The errno attribute of an OSError indicates why this exception was raised. This attribute has one of the following
values. See also this example.

EAGAIN: int

The operation is not complete and should be tried again soon.

EBUSY: int

The device or resource is busy and cannot be used right now.

ECANCELED: int

The operation was canceled.

EINVAL: int

An invalid argument was given. Usually ValueError is used instead.

EIO: int

An unspecified error occurred.

ENODEV: int

Device was not found. For example, a sensor or motor is not plugged in the correct port.

EOPNOTSUPP: int

The operation is not supported on this hub or on the connected device.

EPERM: int

The operation cannot be performed in the current state.

ETIMEDOUT: int

The operation timed out.

errorcode: Dict[int, str]

Dictionary that maps numeric error codes to strings with symbolic error code.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

148

CHAPTER

THIRTEEN

UIO – INPUT/OUTPUT STREAMS

This module contains stream objects that behave like files.

class BytesIO()

class BytesIO(data)
class BytesIO(alloc_size)

A binary stream using an in-memory bytes buffer.

Parameters

• data (bytes or bytearray) – Optional bytes-like object that contains initial data.

• alloc_size (int) – Optional number of preallocated bytes. This parameter is unique to
MicroPython. It is not recommended to use it in end-user code.

getvalue()→ bytes
Gets the contents of the underlying buffer.

class StringIO()

class StringIO(string)
class StringIO(alloc_size)

A stream using an in-memory string buffer.

Parameters

• string (str) – Optional string with initial data.

• alloc_size (int) – Optional number of preallocated bytes. This parameter is unique to
MicroPython. It is not recommended to use it in end-user code.

getvalue()→ str
Gets the contents of the underlying buffer.

class FileIO

This type represents a file opened in binary mode with open(name, 'rb'). You should not instantiate this
class directly.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

149

CHAPTER

FOURTEEN

UJSON – JSON ENCODING AND DECODING

Convert between Python objects and the JSON data format.

dump(object, stream, separators=(', ', ': '))
Serializes an object to a JSON string and write it to a stream.

Parameters

• obj – Object to serialize.

• stream – Stream to write the output to.

• separators (tuple) – An (item_separator, key_separator) tuple to specify how
elements should be separated.

dumps(object, separators=(', ', ': '))
Serializes an object to JSON and return it as a string

Parameters

• obj – Object to serialize.

• separators (tuple) – An (item_separator, key_separator) tuple to specify how
elements should be separated.

Returns
The JSON string.

load(stream)
Parses the stream to interpret and deserialize the JSON data to a MicroPython object.

Parsing continues until end-of-file is encountered. A ValueError is raised if the data in stream is not correctly
formed.

Parameters
stream – Stream from which to read the JSON string.

Returns
The deserialized MicroPython object.

loads(string)
Parses the string to interpret and deserialize the JSON data to a MicroPython object.

A ValueError is raised if the string is not correctly formed.

Parameters
string (str) – JSON string to decode.

Returns
The deserialized MicroPython object.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

150

CHAPTER

FIFTEEN

UMATH – MATH FUNCTIONS

This MicroPython module is similar to the math module in Python.

See also the built-in math functions that can be used without importing anything.

15.1 Rounding and sign

ceil(x)→ int
Rounds up.

Parameters
x (float) – The value to be rounded.

Returns
Value rounded towards positive infinity.

floor(x)→ int
Rounds down.

Parameters
x (float) – The value to be rounded.

Returns
Value rounded towards negative infinity.

trunc(x)→ int
Truncates decimals to get the integer part of a value.

This is the same as rounding towards 0.

Parameters
x (float) – The value to be truncated.

Returns
Integer part of the value.

fmod(x, y)→ float
Gets the remainder of x / y.

Not to be confused with modf().

Parameters

• x (float) – The numerator.

• y (float) – The denominator.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

151

https://docs.python.org/3.5/library/math.html#module-math

Pybricks Modules and Examples Version v3.2.0

Returns
Remainder after division

fabs(x)→ float
Gets the absolute value.

Parameters
x (float) – The value.

Returns
Absolute value of x.

copysign(x, y)→ float
Gets x with the sign of y.

Parameters

• x (float) – Determines the magnitude of the return value.

• y (float) – Determines the sign of the return value.

Returns
x with the sign of y.

15.2 Powers and logarithms

e = 2.718282

The mathematical constant e.

exp(x)→ float
Gets e raised to the power of x.

Parameters
x (float) – The exponent.

Returns
e raised to the power of x.

pow(x, y)→ float
Gets x raised to the power of y.

Parameters

• x (float) – The base number.

• y (float) – The exponent.

Returns
x raised to the power of y.

log(x)→ float
Gets the natural logarithm.

Parameters
x (float) – The value.

Returns
The natural logarithm of x.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

152

Pybricks Modules and Examples Version v3.2.0

sqrt(x)→ float
Gets the square root.

Parameters
x (float) – The value x.

Returns
The square root of x.

15.3 Trigonomety

pi = 3.141593

The mathematical constant .

degrees(x)→ float
Converts an angle from radians to degrees.

Parameters
x (float) – Angle in radians.

Returns
Angle in degrees.

radians(x)→ float
Converts an angle from degrees to radians.

Parameters
x (float) – Angle in degrees.

Returns
Angle in radians.

sin(x)→ float
Gets the sine of an angle.

Parameters
x (float) – Angle in radians.

Returns
Sine of x.

asin(x)→ float
Applies the inverse sine operation.

Parameters
x (float) – Opposite / hypotenuse.

Returns
Arcsine of x, in radians.

cos(x)→ float
Gets the cosine of an angle.

Parameters
x (float) – Angle in radians.

Returns
Cosine of x.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

153

Pybricks Modules and Examples Version v3.2.0

acos(x)→ float
Applies the inverse cosine operation.

Parameters
x (float) – Adjacent / hypotenuse.

Returns
Arccosine of x, in radians.

tan(x)→ float
Gets the tangent of an angle.

Parameters
x (float) – Angle in radians.

Returns
Tangent of x.

atan(x)→ float
Applies the inverse tangent operation.

Parameters
x (float) – Opposite / adjacent.

Returns
Arctangent of x, in radians.

atan2(b, a)→ float
Applies the inverse tangent operation on b / a, and accounts for the signs of b and a to produce the expected
angle.

Parameters

• b (float) – Opposite side of the triangle.

• a (float) – Adjacent side of the triangle.

Returns
Arctangent of b / a, in radians.

15.4 Other math functions

isfinite(x)→ bool
Checks if a value is finite.

Parameters
x (float) – The value to be checked.

Returns
True if x is finite, else False.

isinfinite(x)→ bool
Checks if a value is infinite.

Parameters
x (float) – The value to be checked.

Returns
True if x is infinite, else False.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

154

Pybricks Modules and Examples Version v3.2.0

isnan(x)→ bool
Checks if a value is not-a-number.

Parameters
x (float) – The value to be checked.

Returns
True if x is not-a-number, else False.

modf(x)→ Tuple[float, float]
Gets the fractional and integral parts of x, both with the same sign as x.

Not to be confused with fmod().

Parameters
x (float) – The value to be decomposed.

Returns
Tuple of fractional and integral parts.

frexp(x)→ Tuple[float, float]
Decomposes a value x into a tuple (m, p), such that x == m * (2 ** p).

Parameters
x (float) – The value to be decomposed.

Returns
Tuple of m and p.

ldexp(m, p)→ float
Computes m * (2 ** p).

Parameters

• m (float) – The value.

• p (float) – The exponent.

Returns
Result of m * (2 ** p).

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

155

CHAPTER

SIXTEEN

URANDOM – PSEUDO-RANDOM NUMBERS

This module implements pseudo-random number generators.

All functions in this module should be used with positional arguments. Keyword arguments are not supported.

Basic random numbers

randint(a, b)→ int
Gets a random integer 𝑁 satisfying 𝑎 ≤ 𝑁 ≤ 𝑏.

Parameters

• a (int) – Lowest value. This value is included in the range.

• b (int) – Highest value. This value is included in the range.

Returns
The random integer.

random()→ float
Gets a random value 𝑥 satisfying 0 ≤ 𝑥 < 1.

Returns
The random value.

Random numbers from a range

getrandbits(k)→ int
Gets a random integer 𝑁 satisfying 0 ≤ 𝑁 < 2bits.

Parameters
k (int) – How many bits to use for the result.

randrange(stop)→ int
randrange(start, stop)→ int
randrange(start, stop, step)→ int

Returns a randomly selected element from range(start, stop, step).

For example, randrange(1, 7, 2) returns random numbers from 1 up to (but excluding) 7, in increments of
2. In other words, it returns 1, 3, or 5.

Parameters

• start (int) – Lowest value. Defaults to 0 if only one argument is given.

• stop (int) – Highest value. This value is not included in the range.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

156

Pybricks Modules and Examples Version v3.2.0

• step (int) – Increment between values. Defaults to 1 if only one or two arguments are
given.

Returns
The random number.

uniform(a, b)→ float
Gets a random floating point value 𝑥 satisfying 𝑎 ≤ 𝑥 ≤ 𝑏.

Parameters

• a (float) – Lowest value.

• b (float) – Highest value.

Returns
The random value.

Random elements from a sequence

choice(sequence)→ Any
Gets a random element from a sequence such as a tuple or list.

Parameters
sequence – Sequence from which to select a random element.

Returns
The randomly selected element.

Raises
IndexError – If the sequence is empty.

Updating the random seed

seed(value=None)
Initializes the random number generator.

This gets called when the module is imported, so normally you do not need to call this.

Parameters
value – Seed value. When using None, the system timer will be used.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

157

CHAPTER

SEVENTEEN

USELECT – WAIT FOR EVENTS

This module provides functions to efficiently wait for events on multiple streams.

Poll instance and class

poll()→ Poll
Creates an instance of the Poll class.

Returns
The Poll instance.

class Poll

register(object, eventmask=POLLOUT | POLLOUT)
Register a stream object for polling. The stream object will now be monitored for events. If an event
happens, it becomes part of the return value of poll().

If this method is called again for the same stream object, the object will not be registered again, but the
eventmask flags will be updated, as if calling modify().

Parameters

• object (FileIO) – Stream to be registered for polling.

• eventmask (int) – Which events to use. Should be POLLIN, POLLOUT, or their logical
disjunction: POLLIN | POLLOUT.

unregister(poll)
Unregister an object from polling.

Parameters
object (FileIO) – Stream to be unregistered from polling.

modify(object, eventmask)
Modifies the event mask for the stream object.

Parameters

• object (FileIO) – Stream to be registered for polling.

• eventmask (int) – Which events to use.

Raises
OSError – If the object is not registered. The error is ENOENT.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

158

Pybricks Modules and Examples Version v3.2.0

poll(timeout=- 1)→ List[Tuple[FileIO, int]]
Wait until at least one of the registered objects has a new event or exceptional condition ready to be handled.

Parameters
timeout (int) – Timeout in milliseconds. Choose 0 to return immediately or choose -1 to
wait indefinitely.

Returns
A list of tuples. There is one (object, eventmask, . . .) tuple for each object with an event,
or no tuples if there are no events to be handled. The eventmask value is a combination of
poll flags to indicate what happened. This may include POLLERR and POLLHUP even if they
were not registered.

ipoll(timeout=- 1, flags=1)→ Iterator[Tuple[FileIO, int]]
First, just like poll(), wait until at least one of the registered objects has a new event or exceptional
condition ready to be handled.

But instead of a list, this method returns an iterator for improved efficiency. The iterator yields one (object,
eventmask, . . .) tuple at a time, and overwrites it when yielding the next value. If you need the values
later, make sure to copy them explicitly.

Parameters

• timeout (int) – Timeout in milliseconds. Choose 0 to return immediately or choose -1
to wait indefinitely.

• flags (int) – If set to 1, one-shot behavior for events is employed. This means that
streams for which events happened will have their event masks automatically reset using
poll.modify(obj, 0). This way, new events for such a stream won’t be processed until
a new mask is set with modify(), which is useful for asynchronous I/O schedulers.

Event mask flags

POLLIN: int

Data is available for reading.

POLLOUT: int

More data can be written.

POLLERR: int

Error condition happened on the associated stream. Should be handled explicitly or else further invocations of
poll() may return right away.

POLLHUP: int

Hang up happened on the associated stream. Should be handled explicitly or else further invocations of poll()
may return right away.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

159

Pybricks Modules and Examples Version v3.2.0

17.1 Examples

See the projects website for a demo that uses this module.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

160

https://pybricks.com/projects/tutorials/wireless/hub-to-device/pc-keyboard/

CHAPTER

EIGHTEEN

USTRUCT – PACK AND UNPACK BINARY DATA

This module provides functions to convert between Python values and C-like data structs.

calcsize(format: str)→ int
Gets the data size corresponding to a format string

Parameters
format (str) – Data format string.

Returns
The number of bytes needed to represent this format.

pack(format, value1, value2, ...)
Packs the values using the given format.

Parameters
format (str) – Data format string.

Returns
The data encoded as bytes.

pack_into(format, buffer, offset, value1, value2, ...)
Encode the values using the given format and write them to a given buffer.

Parameters

• format (str) – Data format string.

• buffer (bytearray) – Buffer to store the encoded data.

• offset (int) – Offset from the start of the buffer. Use a negative value to count from the
end of the buffer.

unpack(format, data)→ Tuple
Decodes the binary data using the given format.

Parameters

• format (str) – Data format string.

• data (bytes or bytearray) – Data to unpack.

Returns
The decoded data as a tuple of values.

unpack_from(format, data, offset)→ Tuple
Decodes binary data from a buffer using the given format.

Parameters

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

161

Pybricks Modules and Examples Version v3.2.0

• format (str) – Data format string.

• data (bytes or bytearray) – Data buffer to unpack.

• offset (int) – Offset from the start of the data. Use a negative value to count from the end
of the data.

Returns
The decoded data as a tuple of values.

The following byte orders are supported:

Character Byte order Size Alignment
@ native native native
< little-endian standard none
> big-endian standard none
! network (= big-endian) standard none

The following data types are supported:

Format C Type Python type Standard size
b signed char integer 1
B unsigned char integer 1
h short integer 2
H unsigned short integer 2
i int integer 4
I unsigned int integer 4
l long integer (1) 4
L unsigned long integer (1) 4
q long long integer (1) 8
Q unsigned long long integer (1) 8
f float float 4
d double float 8
s char[] bytes
P void * integer

• (1) Supports values up to +/-1073741823

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

162

CHAPTER

NINETEEN

USYS – SYSTEM SPECIFIC FUNCTIONS

This MicroPython module is a subset of the sys module in Python.

Input and output streams

stdin

This is a stream object (uio.FileIO) that receives input from a connected terminal, if any.

Also see kbd_intr to disable KeyboardInterrupt when passing binary data via stdin.

stdout

This is a stream object (uio.FileIO) that sends output to a connected terminal, if any.

stderr

Alias for stdout.

Version info

implementation

MicroPython version tuple. See format and example below.

version

Python compatibility version, Pybricks version, and build date. See format and example below.

version_info

Python compatibility version. See format and example below.

19.1 Examples

19.1.1 Version information

from pybricks import version

('essentialhub', '3.2.0b5', 'v3.2.0b5 on 2022-11-11')
print(version)

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

163

https://docs.python.org/3.5/library/sys.html

Pybricks Modules and Examples Version v3.2.0

import usys

('micropython', (1, 19, 1), 'SPIKE Essential Hub with STM32F413RG', 6)
print(usys.implementation)

'3.4.0; Pybricks MicroPython v3.2.0b5 on 2022-11-11'
print(usys.version)

(3, 4, 0)
print(usys.version_info)

19.1.2 Standard input and output

The stdin stream can be used to capture input via the Pybricks Code input/output window. See the keyboard input
project to learn how this works. This approach can be extended to exchange data with any other device as well.

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

164

https://pybricks.com/projects/tutorials/wireless/hub-to-device/pc-keyboard/
https://pybricks.com/projects/tutorials/wireless/hub-to-device/

PYTHON MODULE INDEX

m
micropython, 145

p
pybricks.geometry, 121
pybricks.hubs, 4
pybricks.iodevices, 96
pybricks.parameters, 100
pybricks.pupdevices, 53
pybricks.robotics, 116
pybricks.tools, 115

u
uerrno, 148
uio, 149
ujson, 150
umath, 151
urandom, 156
uselect, 158
ustruct, 161
usys, 163

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

165

INDEX

A
A (Port attribute), 109
abs() (in module ubuiltins), 135
acceleration() (EssentialHub.imu method), 43
acceleration() (MoveHub.imu method), 5
acceleration() (PrimeHub.imu method), 28
acceleration() (TechnicHub.imu method), 17
acos() (in module umath), 153
all() (in module ubuiltins), 131
ambient() (ColorDistanceSensor method), 71
ambient() (ColorSensor method), 77
angle() (DriveBase method), 118
angle() (Motor method), 56
angular_velocity() (EssentialHub.imu method), 43
angular_velocity() (PrimeHub.imu method), 28
angular_velocity() (TechnicHub.imu method), 17
animate() (CityHub.light method), 11
animate() (EssentialHub.light method), 42
animate() (MoveHub.light method), 5
animate() (PrimeHub.display method), 26
animate() (PrimeHub.light method), 25
animate() (TechnicHub.light method), 16
any() (in module ubuiltins), 132
ArithmeticError (class in ubuiltins), 141
ARROW_DOWN (Icon attribute), 105
ARROW_LEFT (Icon attribute), 105
ARROW_LEFT_DOWN (Icon attribute), 104
ARROW_LEFT_UP (Icon attribute), 104
ARROW_RIGHT (Icon attribute), 105
ARROW_RIGHT_DOWN (Icon attribute), 104
ARROW_RIGHT_UP (Icon attribute), 104
ARROW_UP (Icon attribute), 105
asin() (in module umath), 153
AssertionError (class in ubuiltins), 141
atan() (in module umath), 154
atan2() (in module umath), 154
AttributeError (class in ubuiltins), 141
Axis (class in pybricks.geometry), 121

B
B (Port attribute), 109
BACK (Side attribute), 110

BaseException (class in ubuiltins), 141
BEACON (Button attribute), 100
beep() (PrimeHub.speaker method), 29
bin() (in module ubuiltins), 134
BLACK (Color attribute), 101
blink() (CityHub.light method), 11
blink() (EssentialHub.light method), 42
blink() (MoveHub.light method), 4
blink() (PrimeHub.light method), 25
blink() (TechnicHub.light method), 16
BLUE (Color attribute), 101
bool (class in ubuiltins), 128
BOTTOM (Side attribute), 110
BRAKE (Stop attribute), 113
brake() (Motor method), 57
Button (built-in class), 100
bytearray (class in ubuiltins), 130
bytes (class in ubuiltins), 130
BytesIO (class in uio), 149

C
C (Port attribute), 109
calcsize() (in module ustruct), 161
callable() (in module ubuiltins), 138
ceil() (in module umath), 151
CENTER (Button attribute), 100
char() (PrimeHub.display method), 27
choice() (in module urandom), 157
chr() (in module ubuiltins), 134
CIRCLE (Icon attribute), 108
CityHub (class in pybricks.hubs), 10
classmethod() (in module ubuiltins), 140
CLOCKWISE (Direction attribute), 103
CLOCKWISE (Icon attribute), 108
COAST (Stop attribute), 113
COAST_SMART (Stop attribute), 113
Color (class in pybricks.parameters), 101
color() (ColorDistanceSensor method), 70
color() (ColorSensor method), 77
ColorDistanceSensor (class in pybricks.pupdevices),

70
ColorLightMatrix (class in pybricks.pupdevices), 87

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

166

Pybricks Modules and Examples Version v3.2.0

ColorSensor (class in pybricks.pupdevices), 77
complex (class in ubuiltins), 129
connected() (EssentialHub.charger method), 44
connected() (PrimeHub.charger method), 30
const() (in module micropython), 145
copysign() (in module umath), 152
cos() (in module umath), 153
count() (InfraredSensor method), 69
COUNTERCLOCKWISE (Direction attribute), 103
COUNTERCLOCKWISE (Icon attribute), 109
current() (CityHub.battery method), 11
current() (EssentialHub.battery method), 44
current() (EssentialHub.charger method), 44
current() (MoveHub.battery method), 5
current() (PrimeHub.battery method), 30
current() (PrimeHub.charger method), 30
current() (TechnicHub.battery method), 18
curve() (DriveBase method), 117
CYAN (Color attribute), 101

D
D (Port attribute), 109
dc() (Motor method), 57
DCMotor (class in pybricks.pupdevices), 53
degrees() (in module umath), 153
detectable_colors() (ColorDistanceSensor method),

71
detectable_colors() (ColorSensor method), 77
dict (class in ubuiltins), 129
dir() (in module ubuiltins), 138
Direction (built-in class), 103
distance() (ColorDistanceSensor method), 71
distance() (DriveBase method), 118
distance() (ForceSensor method), 85
distance() (InfraredSensor method), 69
distance() (UltrasonicSensor method), 83
distance_control (DriveBase attribute), 119
divmod() (in module ubuiltins), 135
done() (DriveBase method), 117
done() (Motor method), 59
DOWN (Button attribute), 100
DOWN (Icon attribute), 103
drive() (DriveBase method), 118
DriveBase (class in pybricks.robotics), 116
dump() (in module ujson), 150
dumps() (in module ujson), 150

E
e (in module umath), 152
E (Port attribute), 109
EAGAIN (in module uerrno), 148
EBUSY (in module uerrno), 148
ECANCELED (in module uerrno), 148
EINVAL (in module uerrno), 148

EIO (in module uerrno), 148
EMPTY (Icon attribute), 107
ENODEV (in module uerrno), 148
enumerate (class in ubuiltins), 132
EOFError (class in ubuiltins), 141
EOPNOTSUPP (in module uerrno), 148
EPERM (in module uerrno), 148
errorcode (in module uerrno), 148
EssentialHub (class in pybricks.hubs), 41
ETIMEDOUT (in module uerrno), 148
eval() (in module ubuiltins), 137
Exception (class in ubuiltins), 141
exec() (in module ubuiltins), 137
exp() (in module umath), 152
EYE_LEFT (Icon attribute), 106
EYE_LEFT_BLINK (Icon attribute), 106
EYE_LEFT_BROW (Icon attribute), 106
EYE_LEFT_BROW_UP (Icon attribute), 106
EYE_RIGHT (Icon attribute), 106
EYE_RIGHT_BLINK (Icon attribute), 106
EYE_RIGHT_BROW (Icon attribute), 106
EYE_RIGHT_BROW_UP (Icon attribute), 107

F
F (Port attribute), 109
fabs() (in module umath), 152
FALSE (Icon attribute), 109
FileIO (class in uio), 149
float (class in ubuiltins), 129
floor() (in module umath), 151
fmod() (in module umath), 151
force() (ForceSensor method), 85
ForceSensor (class in pybricks.pupdevices), 84
frexp() (in module umath), 155
from_bytes() (int class method), 129
FRONT (Side attribute), 110
FULL (Icon attribute), 107

G
GeneratorExit (class in ubuiltins), 141
getattr() (in module ubuiltins), 138
getrandbits() (in module urandom), 156
getvalue() (BytesIO method), 149
getvalue() (StringIO method), 149
globals() (in module ubuiltins), 137
GRAY (Color attribute), 101
GREEN (Color attribute), 101

H
HAPPY (Icon attribute), 105
hasattr() (in module ubuiltins), 138
hash() (in module ubuiltins), 137
heading() (EssentialHub.imu method), 43
heading() (PrimeHub.imu method), 28

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

167

Pybricks Modules and Examples Version v3.2.0

heading() (TechnicHub.imu method), 17
heading_control (DriveBase attribute), 119
heap_lock() (in module micropython), 145
heap_unlock() (in module micropython), 145
HEART (Icon attribute), 107
help() (in module ubuiltins), 137
hex() (in module ubuiltins), 134
HOLD (Stop attribute), 113
hold() (Motor method), 57
hsv() (ColorDistanceSensor method), 71
hsv() (ColorSensor method), 77

I
Icon (class in pybricks.parameters), 103
icon() (PrimeHub.display method), 26
id() (in module ubuiltins), 138
implementation (in module usys), 163
ImportError (class in ubuiltins), 141
IndentationError (class in ubuiltins), 141
IndexError (class in ubuiltins), 141
info() (PUPDevice method), 96
InfraredSensor (class in pybricks.pupdevices), 69
input() (in module ubuiltins), 128
int (class in ubuiltins), 129
InventorHub (built-in class), 24
ipoll() (Poll method), 159
isfinite() (in module umath), 154
isinfinite() (in module umath), 154
isinstance() (in module ubuiltins), 139
isnan() (in module umath), 154
issubclass() (in module ubuiltins), 139
iter() (in module ubuiltins), 132

K
kbd_intr() (in module micropython), 145
KeyboardInterrupt (class in ubuiltins), 141
KeyError (class in ubuiltins), 141

L
ldexp() (in module umath), 155
LEFT (Button attribute), 100
LEFT (Icon attribute), 104
LEFT (Side attribute), 110
LEFT_DOWN (Button attribute), 100
LEFT_MINUS (Button attribute), 100
LEFT_PLUS (Button attribute), 100
LEFT_UP (Button attribute), 100
len() (in module ubuiltins), 130
Light (class in pybricks.pupdevices), 87
limits() (Motor.control method), 59
list (class in ubuiltins), 131
load() (in module ujson), 150
load() (Motor method), 57
loads() (in module ujson), 150

locals() (in module ubuiltins), 138
log() (in module umath), 152
LookupError (class in ubuiltins), 141
LWP3Device (class in pybricks.iodevices), 98

M
MAGENTA (Color attribute), 101
map() (in module ubuiltins), 132
Matrix (class in pybricks.geometry), 121
max() (in module ubuiltins), 135
mem_info() (in module micropython), 145
MemoryError (class in ubuiltins), 141
micropython

module, 145
min() (in module ubuiltins), 135
modf() (in module umath), 155
modify() (Poll method), 158
module

micropython, 145
pybricks.geometry, 121
pybricks.hubs, 4
pybricks.iodevices, 96
pybricks.parameters, 100
pybricks.pupdevices, 53
pybricks.robotics, 116
pybricks.tools, 115
uerrno, 148
uio, 149
ujson, 150
umath, 151
urandom, 156
uselect, 158
ustruct, 161
usys, 163

Motor (class in pybricks.pupdevices), 55
MoveHub (class in pybricks.hubs), 4

N
name() (CityHub.system method), 12
name() (EssentialHub.system method), 44
name() (LWP3Device method), 98
name() (MoveHub.system method), 6
name() (PrimeHub.system method), 30
name() (Remote method), 89
name() (TechnicHub.system method), 18
NameError (class in ubuiltins), 142
next() (in module ubuiltins), 132
NONE (Color attribute), 101
NONE (Stop attribute), 113
NotImplementedError (class in ubuiltins), 142
number() (PrimeHub.display method), 27

O
object (class in ubuiltins), 130

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

168

Pybricks Modules and Examples Version v3.2.0

oct() (in module ubuiltins), 134
off() (CityHub.light method), 11
off() (ColorDistanceSensor.light method), 71
off() (ColorLightMatrix method), 87
off() (ColorSensor.lights method), 78
off() (EssentialHub.light method), 42
off() (Light method), 88
off() (MoveHub.light method), 4
off() (PrimeHub.display method), 26
off() (PrimeHub.light method), 25
off() (Remote.light method), 89
off() (TechnicHub.light method), 16
off() (UltrasonicSensor.lights method), 83
on() (CityHub.light method), 11
on() (ColorDistanceSensor.light method), 71
on() (ColorLightMatrix method), 87
on() (ColorSensor.lights method), 78
on() (EssentialHub.light method), 42
on() (Light method), 87
on() (MoveHub.light method), 4
on() (PrimeHub.light method), 25
on() (Remote.light method), 89
on() (TechnicHub.light method), 16
on() (UltrasonicSensor.lights method), 83
opt_level() (in module micropython), 145
ORANGE (Color attribute), 101
ord() (in module ubuiltins), 135
orientation() (PrimeHub.display method), 26
OverflowError (class in ubuiltins), 142

P
pack() (in module ustruct), 161
pack_into() (in module ustruct), 161
PAUSE (Icon attribute), 107
pause() (StopWatch method), 115
pi (in module umath), 153
pid() (Motor.control method), 59
pixel() (PrimeHub.display method), 26
play_notes() (PrimeHub.speaker method), 29
Poll (class in uselect), 158
poll() (in module uselect), 158
poll() (Poll method), 158
POLLERR (in module uselect), 159
POLLHUP (in module uselect), 159
POLLIN (in module uselect), 159
POLLOUT (in module uselect), 159
Port (built-in class), 109
pow() (in module ubuiltins), 136
pow() (in module umath), 152
presence() (UltrasonicSensor method), 83
pressed() (CityHub.button method), 12
pressed() (EssentialHub.button method), 42
pressed() (ForceSensor method), 85
pressed() (MoveHub.button method), 6

pressed() (PrimeHub.buttons method), 27
pressed() (Remote.buttons method), 89
pressed() (TechnicHub.button method), 18
PrimeHub (class in pybricks.hubs), 24
print() (in module ubuiltins), 128
PUPDevice (class in pybricks.iodevices), 96
pybricks.geometry

module, 121
pybricks.hubs

module, 4
pybricks.iodevices

module, 96
pybricks.parameters

module, 100
pybricks.pupdevices

module, 53
pybricks.robotics

module, 116
pybricks.tools

module, 115

Q
qstr_info() (in module micropython), 146

R
radians() (in module umath), 153
randint() (in module urandom), 156
random() (in module urandom), 156
randrange() (in module urandom), 156
range (class in ubuiltins), 133
read() (LWP3Device method), 99
read() (PUPDevice method), 96
RED (Color attribute), 101
reflection() (ColorDistanceSensor method), 71
reflection() (ColorSensor method), 77
reflection() (InfraredSensor method), 69
register() (Poll method), 158
Remote (class in pybricks.pupdevices), 89
repr() (in module ubuiltins), 135
reset() (DriveBase method), 118
reset() (StopWatch method), 115
reset_angle() (Motor method), 56
reset_heading() (EssentialHub.imu method), 43
reset_heading() (PrimeHub.imu method), 28
reset_heading() (TechnicHub.imu method), 18
reset_reason() (CityHub.system method), 12
reset_reason() (EssentialHub.system method), 45
reset_reason() (MoveHub.system method), 6
reset_reason() (PrimeHub.system method), 31
reset_reason() (TechnicHub.system method), 19
resume() (StopWatch method), 115
reversed() (in module ubuiltins), 133
RIGHT (Button attribute), 100
RIGHT (Icon attribute), 104

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

169

Pybricks Modules and Examples Version v3.2.0

RIGHT (Side attribute), 110
RIGHT_DOWN (Button attribute), 100
RIGHT_MINUS (Button attribute), 100
RIGHT_PLUS (Button attribute), 100
RIGHT_UP (Button attribute), 100
round() (in module ubuiltins), 136
run() (Motor method), 57
run_angle() (Motor method), 58
run_target() (Motor method), 58
run_time() (Motor method), 58
run_until_stalled() (Motor method), 58
RuntimeError (class in ubuiltins), 142

S
SAD (Icon attribute), 105
scale (Motor.control attribute), 60
seed() (in module urandom), 157
set_stop_button() (CityHub.system method), 12
set_stop_button() (EssentialHub.system method), 44
set_stop_button() (MoveHub.system method), 6
set_stop_button() (PrimeHub.system method), 30
set_stop_button() (TechnicHub.system method), 18
setattr() (in module ubuiltins), 139
settings() (DriveBase method), 117
settings() (Motor method), 59
shape (Matrix attribute), 121
shutdown() (CityHub.system method), 12
shutdown() (EssentialHub.system method), 45
shutdown() (MoveHub.system method), 6
shutdown() (PrimeHub.system method), 31
shutdown() (TechnicHub.system method), 19
Side (built-in class), 110
sin() (in module umath), 153
slice (class in ubuiltins), 131
sorted() (in module ubuiltins), 133
speed() (Motor method), 56
sqrt() (in module umath), 152
SQUARE (Icon attribute), 107
stack_use() (in module micropython), 146
stall_tolerances() (Motor.control method), 60
stalled() (DriveBase method), 118
stalled() (Motor method), 57
state() (DriveBase method), 118
staticmethod() (in module ubuiltins), 140
status() (EssentialHub.charger method), 44
status() (PrimeHub.charger method), 30
stderr (in module usys), 163
stdin (in module usys), 163
stdout (in module usys), 163
Stop (built-in class), 113
stop() (DriveBase method), 118
stop() (Motor method), 57
StopIteration (class in ubuiltins), 142
StopWatch (class in pybricks.tools), 115

storage() (CityHub.system method), 12
storage() (EssentialHub.system method), 45
storage() (MoveHub.system method), 6
storage() (PrimeHub.system method), 31
storage() (TechnicHub.system method), 18
str (class in ubuiltins), 131
straight() (DriveBase method), 116
StringIO (class in uio), 149
sum() (in module ubuiltins), 136
super() (in module ubuiltins), 139
SyntaxError (class in ubuiltins), 142
SystemExit (class in ubuiltins), 142

T
T (Matrix attribute), 121
tan() (in module umath), 154
target_tolerances() (Motor.control method), 60
TechnicHub (class in pybricks.hubs), 16
text() (PrimeHub.display method), 27
tilt() (EssentialHub.imu method), 43
tilt() (PrimeHub.imu method), 28
tilt() (TechnicHub.imu method), 17
tilt() (TiltSensor method), 68
TiltSensor (class in pybricks.pupdevices), 68
time() (StopWatch method), 115
to_bytes() (int method), 129
TOP (Side attribute), 110
touched() (ForceSensor method), 85
track_target() (Motor method), 58
TRIANGLE_DOWN (Icon attribute), 108
TRIANGLE_LEFT (Icon attribute), 108
TRIANGLE_RIGHT (Icon attribute), 108
TRIANGLE_UP (Icon attribute), 108
TRUE (Icon attribute), 109
trunc() (in module umath), 151
tuple (class in ubuiltins), 131
turn() (DriveBase method), 116
type (class in ubuiltins), 130
TypeError (class in ubuiltins), 142

U
uerrno
module, 148

uio
module, 149

ujson
module, 150

UltrasonicSensor (class in pybricks.pupdevices), 82
umath
module, 151

uniform() (in module urandom), 157
unpack() (in module ustruct), 161
unpack_from() (in module ustruct), 161
unregister() (Poll method), 158

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

170

Pybricks Modules and Examples Version v3.2.0

UP (Button attribute), 100
UP (Icon attribute), 103
up() (EssentialHub.imu method), 43
up() (MoveHub.imu method), 5
up() (PrimeHub.imu method), 28
up() (TechnicHub.imu method), 17
urandom

module, 156
uselect
module, 158

ustruct
module, 161

usys
module, 163

V
ValueError (class in ubuiltins), 142
vector() (in module pybricks.geometry), 121
version (in module usys), 163
version_info (in module usys), 163
VIOLET (Color attribute), 101
voltage() (CityHub.battery method), 11
voltage() (EssentialHub.battery method), 44
voltage() (MoveHub.battery method), 5
voltage() (PrimeHub.battery method), 30
voltage() (TechnicHub.battery method), 18
volume() (PrimeHub.speaker method), 29

W
wait() (in module pybricks.tools), 115
WHITE (Color attribute), 101
write() (LWP3Device method), 98
write() (PUPDevice method), 96

Y
YELLOW (Color attribute), 101

Z
ZeroDivisionError (class in ubuiltins), 142
zip() (in module ubuiltins), 133

LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS EV3 logo are trademarks and/or copyrights of the LEGO Group of companies which does not sponsor, authorize or endorse this site. © 2018-2021 The Pybricks Authors

171

	hubs – Built-in hub functions
	Move Hub
	Status light examples
	Turning the light on and off
	Making the light blink

	IMU examples
	Testing which way is up
	Reading acceleration

	Button and system examples
	Using the stop button during your program
	Turning the hub off
	Making random numbers

	City Hub
	Status light examples
	Turning the light on and off
	Changing brightness and using custom colors
	Making the light blink
	Creating light animations

	Button and system examples
	Using the stop button during your program
	Turning the hub off

	Technic Hub
	Status light examples
	Turning the light on and off
	Changing brightness and using custom colors
	Making the light blink
	Creating light animations

	IMU examples
	Testing which way is up
	Reading the tilt value
	Using a custom hub orientation
	Reading acceleration and angular velocity vectors
	Reading acceleration and angular velocity on one axis

	Button and system examples
	Using the stop button during your program
	Turning the hub off

	Prime Hub / Inventor Hub
	Status light examples
	Turning the light on and off
	Changing brightness and using custom colors
	Making the light blink
	Creating light animations

	Matrix display examples
	Displaying images
	Displaying numbers
	Displaying text
	Displaying individual pixels
	Changing the display orientation
	Making your own images
	Combining icons to make expressions
	Displaying animations

	Button examples
	Detecting button presses

	IMU examples
	Testing which way is up
	Reading the tilt value
	Using a custom hub orientation
	Reading acceleration and angular velocity vectors
	Reading acceleration and angular velocity on one axis

	System examples
	Changing the stop button combination
	Turning the hub off

	Essential Hub
	Status light examples
	Turning the light on and off
	Changing brightness and using custom colors
	Making the light blink
	Creating light animations

	IMU examples
	Testing which way is up
	Reading the tilt value
	Using a custom hub orientation
	Reading acceleration and angular velocity vectors
	Reading acceleration and angular velocity on one axis

	System examples
	Using the stop button during your program
	Turning the hub off

	pupdevices – Motors, sensors, lights
	Motors without rotation sensors
	Examples
	Making a train drive forever
	Making the motor move back and forth
	Changing the positive direction
	Starting and stopping

	Motors with rotation sensors
	Initialization examples
	Making the motor move back and forth
	Initializing multiple motors
	Setting the positive direction as counterclockwise
	Using gears

	Measurement examples
	Measuring the angle and speed
	Resetting the measured angle
	Getting the absolute angle

	Movement examples
	Basic usage of all run methods
	Stopping ongoing movements in different ways
	Using the then argument to change how a run command stops

	Stall examples
	Running a motor until a mechanical endpoint
	Centering a steering mechanism

	Parallel movement examples
	Using the wait argument to run motors in parallel
	Waiting for two parallel actions to complete

	Tilt Sensor
	Examples
	Measuring pitch and roll

	Infrared Sensor
	Examples
	Measuring distance, object count, and reflection

	Color and Distance Sensor
	Examples
	Measuring color
	Waiting for a color
	Measuring distance and blinking the light
	Reading hue, saturation, value
	Changing the detectable colors

	Power Functions
	Examples
	Control a Power Functions motor
	Controlling multiple Power Functions motors

	Color Sensor
	Examples
	Measuring color and reflection
	Waiting for a color
	Reading reflected hue, saturation, and value
	Changing the detectable colors
	Reading ambient hue, saturation, value, and color
	Blinking the built-in lights
	Turning off the lights when the program ends

	Ultrasonic Sensor
	Examples
	Measuring distance and switching on the lights
	Gradually change the brightness of the lights

	Force Sensor
	Examples
	Measuring force and movement
	Measuring peak force

	Color Light Matrix
	Light
	Examples
	Making the light blink
	Gradually change the brightness

	Remote Control
	Examples
	Checking which buttons are pressed
	Changing the remote light color
	Changing the light color using the buttons
	Using the timeout setting
	Changing the name of the remote

	iodevices – Custom devices
	Powered Up Device
	Examples
	Detecting devices

	LEGO Wireless Protocol v3 device

	parameters – Parameters and constants
	Button
	Color
	Direction
	Icon
	Port
	Side
	Stop

	tools – Timing tools
	robotics – Robotics and drive bases
	Examples
	Driving straight and turning in place

	geometry – Geometry and algebra
	Reference frames

	Signals and Units
	Numbers
	Time
	time: ms

	Angles and angular motion
	angle: deg
	rotational speed: deg/s
	rotational acceleration: deg/s2

	Distance and linear motion
	distance: mm
	dimension: mm
	speed: mm/s
	linear acceleration: mm/s2

	Approximate and relative units
	percentage: %
	relative distance: %
	brightness: %

	Force and torque
	force: N
	torque: mNm

	Electricity
	voltage: mV
	current: mA
	energy: J
	power: mW

	Ambient environment
	frequency: Hz
	temperature: °C
	hue: deg

	Built-in classes and functions
	Input and output
	Basic types
	Sequences
	Iterators
	Conversion functions
	Math functions
	Runtime functions
	Class functions
	Method decorators

	Exceptions and errors
	Examples
	Debugging in the REPL terminal
	Running code when the stop button is pressed
	Detecting devices using OSError

	micropython – MicroPython internals
	Examples
	Using constants for efficiency
	Checking free RAM
	Getting more memory statistics

	uerrno – Error codes
	uio – Input/output streams
	ujson – JSON encoding and decoding
	umath – Math functions
	Rounding and sign
	Powers and logarithms
	Trigonomety
	Other math functions

	urandom – Pseudo-random numbers
	uselect – Wait for events
	Examples

	ustruct – Pack and unpack binary data
	usys – System specific functions
	Examples
	Version information
	Standard input and output

	Python Module Index
	Index

